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Abstract. The paper presents reliability analysis which
was realized for an industrial company. The aim of the
paper is to present the usage of discrete time Markov
chains and the flow in network approach. Discrete
Markov chains a well-known method of stochastic mod-
elling describes the issue. The method is suitable for
many systems occurring in practice where we can easily
distinguish various amount of states. Markov chains
are used to describe transitions between the states of
the process. The industrial process is described as a
graph network. The maximal flow in the network cor-
responds to the production. The Ford-Fulkerson algo-
rithm is used to quantify the production for each state.
The combination of both methods are utilized to quan-
tify the expected value of the amount of manufactured
products for the given time period.
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1. Introduction

The reliability of production plays the fundamental role
in an industrial sphere. Nowadays the reliability of in-
dustry process is on a high level. It is increased by
improving the quality of each component or by redun-
dancy of the production process. Even though it is
the top reliability process, there is still a chance that
system fails. In our case we analyse the process which
has no redundancy. Thus the information about the
probability of the systems failures is very valuable.

In the previous work an [1] a reliability analysis of
the part of an industry process was realized. In the
former application there was analysed a part of the in-
dustry process distributed in parallel. The main aim
of the cited paper was to estimate the probability, that

the production will be equal or greater than the indus-
trial partner demand. To deal with the task a Monte
Carlo simulation of Discrete time Markov chains was
used.

The goal of this paper is to present the Discrete time
Markov chain analysis realized on the system, which is
not distributed in parallel. Since the analysed process
is more complicated the graph theory approach seems
to be an appropriate tool.

Graph theory has previously been applied to relia-
bility, but for different purposes than we intend. One
of example of application of graph theory in reliability
is a reliability polynomial [3] or network reliability. In
this approach a graph describes a network where each
component (edge) has the same probability of fail. The
most related work to our paper is probably the research
of Christopher Dabrowski [4], [5]. As well as in our pa-
per Dabrowski uses graph theory as a tool for counting
with discrete time Markov chains. In contrast to our
work the Markov chains described in Dabrowski one
are used for different purposes. Dabrowski analyses
a large scale grid. His study describe the application
for finding states of the grid, which could lead to the
system degradation. Dabrowski uses the graph theory
to describe transitions of the Markov chain model be-
tween the initial state and the absorbing state. We use
the graph theory to describe the analysed process on
which the discrete time Markov chain is be applied.

2. Markov Chains

Markov chain is a random process with a discrete time
set T ⊂ N ∪ {0}, which satisfies the so called “Markov
property”. The Markov property means that the future
evolution of the system depends only on the current
state of the system and not on its past history.

P{Xn+1 = xn+1|X0 = x0, . . . , Xn = xn} =

= P{Xn+1 = xn+1|Xn = xn}, (1)
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where X1, . . . , Xn is a sequence of random variables.
The index denotes certain time t ∈ T x1, . . . xn is a se-
quence of states in time t ∈ T . As a transition probabil-
ity pij we regard probability, that the system changes
from the state i to the state j:

pij = P{Xn+1 = xj |Xn = xi}. (2)

Matrix P, where pij is placed in row i and column j,
is for all admissible i and j called transition probability
matrix:

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
...

...
pn1 pn2 · · · pnn

 . (3)

Clearly all elements of the matrix P satisfy the fol-
lowing property:

∀i ∈ {1, 2, · · · , n} :
n∑

j=1

pij = 1. (4)

As a probability vector we will understand a vector
~v where, an amount of its elements vi are equal to the
amount of states in Markov chain and the following
equations holds:

∀vi ∈ ~v : vi ≤ 1, and
∑
alli

= 1. (5)

By ~v(t) we denote vector of probabilities of all the
states in time t ∈ T . By ~v(0) we denote an initial prob-
ability vector. Usually, all its coordinates are equal to
zero except the first, which is equal to 1. The vector
~v(0) denotes the probability in which state the system
occurs in time t = 0. It is easy to proof that [6]:

~v(t) = ~v(0) ·Pt. (6)

As a stationary distribution we will understand a
vector ~z which satisfies the property:

z = ~zP. (7)

Suppose that the limit π = limn→∞ ~π(n) exists, then
the probability vector ~π is called limiting distribution
(limiting vector):

π = lim
n→∞

~π(0)Pn. (8)

In some literature there is written that, the station-
ary distribution is equal to the limiting distribution.
Actually it is true only if the discrete time Markov
chain (further as DTMC) satisfies the condition of er-
godicity (irreducibility, aperiodicity). To be able to

calculate the limiting distribution π we will describe
further properties of DTMC.

A Markov chain j is periodic with period p, if on
leaving state j a return is possible only in a number
of transitions that is a multiple of the integer p > 1.
For example Markov chain with following transition
probability matrix: (

0 1
1 0

)
is periodic with period p = 2. The DTMC is said to
be irreducible if every state can be rached from every
other state.

The probability of ever returning to state j is de-
noted by fjj and is given by:

fjj =

∞∑
n=1

fnjj . (9)

If fjj < 1, then state j is said to be transient. If
fjj = 1, the state is recurrent and we can define the
mean recurrent time.

As mean recurrent time Mjj we will understand:

Mjj =

∞∑
n=1

nfnjj . (10)

If Mjj < ∞ (or equal to ∞), we say that the state
is positive recurrent (or null recurrent). In a finite
Markov chain, each state is either positive-recurrent
or transient, and furthermore, at least one state must
be positive-recurrent [6]. Theorem Let a Markov chain
C be irreducible. Then C is positive-recurrent or null
recurrent or transient, i.e.:

• all the states are positive-recurrent, or

• all the states are null-recurrent, or

• all the states are transient.

If all the states of DTMC are positive-recurrent and
aperiodic, then the probability distribution ~v(n) con-
verges to a limiting distribution π, which is indepen-
dent of initial distribution ~v(0). The π can be obtained
be solving the following equations:

π = ~πP, π > 0 and
∑

for all i

πi = 1. (11)

3. Preliminaries

In this section we will establish fundamental terminol-
ogy of graph theory which will be used further in this
paper.
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3.1. Definition of an Oriented Graph

An oriented graph is an ordered pairG = (V ;E), where
V is the set of vertices and E is the set of edges. E ⊆
V × V .

3.2. Definition of Network

Network is a four-tupple S = (G; s; t;x), where:

• G is an oriented graph,

• vertices s ∈ V (G), t ∈ V (G) are the source and
sink,

• x : E(G) → R+ is a a positive labelling on edges,
called edge capacities.

3.3. Definition of Flow in Network

Flow in a network S = (G; s; t;x) is a function f :
E(G)→ R+

0 , where:

• no edge capacity is exceeded:
∀e ∈ E(G) : 0 ≤≤ f(e) ≤ x(e),

• the conservation of flow equation holds:
∀v ∈ V (G), v 6= z, s :

∑
e→v f(e) =

∑
e←v f(e).

The value of a flow f is ‖f‖ =
∑

e←z f(e)−
∑

e→z f(e).

3.4. Definition of Cut

Cut in the network S = (G; s; t;x) is such a set of
edges C, C ⊆ E(G), such that in the factor of graph
G, G − C, no oriented path remains. As minimal cut
we will understand the cut where each proper subset
of C is not a cut in the network.

4. Problem Formulation

The research presented here, was motivated by the
practical problem. Analysed company was asked to
quantify the probability that production fails was.
Knowledge of risk, that the order won’t be delivered
in time, is important for the partner’s firm to establish
sufficient gods supplies. In the previous application
see [1] a reliability analysis of the part of an industry
process was realized. For each machine we could dis-
tinguish two modes – in order ’1’ or in fail ’0’. Thus the
whole system could occur in one of the 2n states where
n is an amount of machines of analysed industry pro-
cess. Since machines were organized in parallel it was
easy to calculate a whole production of each state. The

production of the certain state was calculated as a sum
of production of functional states. More complicated
situation occurs when the system is not connected in
parallel. The aim of this paper is to present a calcu-
lation of a maximal production of each of 2n states by
usage a graph flow in network theory. In the following
application we will simplify the process that, even at
the beginning the gods can be reached from the begin
to end of the process. We assume that for each state
the process will produce a maximum possible produc-
tion w.

5. Application

In this section we will present an example how to use
a flow in network theory in a reliability analysis. First,
we will define states of the industry process and calcu-
late a maximum production of each state by using the
Ford Fulkerson algorithm. At the end we will demon-
strate on the certain data how to calculate an expected
value of production for a given time t.

The analyzed industry process consists of six ma-
chines. For each machine we distinguish 2 different
states one - work, zero - in fail. Thus the industrial
process consists of 26 different states. State denotes an
ordered six -tuple of ones and zeroes.

Let us describe the industry process of a firm with
an oriented network. Every machine is represented as
a vertex. The begin and the end of the processes repre-
sented by a source and sink of the network. The begin
of a process consists of acceptance of gods and divi-
sion between machines of the process. The end of a
process consists of product inspection and expediting
to the customers. Oriented edges describes the direc-
tion of the production process. Labelling of vertices
represents the maximum amount of gods processed by
the certain machine. To be able to work with labelled
edges each vertex V1, V2, . . . V6 from the structure
of the process (Fig. 1) is replaced by two vertices con-
nected by the edge labelled by the same value as former
vertex.

For our purposes all edges except newly created
edges (with original labelling of vertices ) incident with
source and sink are labelled by∞. For each of 26 state
we will find the maximum flow in a network. For each
state the edges incident with the vertices representing
the machines occurred in failure will be removed from
the network. To calculate the maximal production of
each state we will find a max flow in network. In our
application we will assume that the maximal flow is
achieved for any possible state. Without this simpli-
fication, there would be nearly impossible to estimate
the production of certain state.
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Begin

w(V1) = 60 w(V2) = 150

w(V3) = 150 w(V4) = 80

w(V5) = 80 w(V6) = 170

End

Fig. 1: Structure of process.

To find a maximal flow we will use a well known
Ford-Fulkerson algorithm. For searching the graph
edges a "Breadth-first" search was used. In the Tab. 1
there is a demonstration of several states and their pro-
duction wi.

To be able, to compute with DTMC, we need to
calculate elements of transition probability matrix. To
calculate the transition probability matrix P we need
to calculate probabilities of failure pf , and probability
of repair pr for each machine. To estimate probability
pf that the system fails during one hour we calculated
the expected value as an average length of period fail
Q:

pf =
1

Q
. (12)

Using the maximum likelihood method we estimated
the probability pr which says that a machine will be
repaired within one hour:

pr =
∆V

V
, (13)

where V is an amount of all repairs that were realized
and ∆V is an amount of all repairs that lasted less than
one hour.

The calculated probabilities for given machines V1,
V2,. . . V6 are presented in the Tab. 2. Since there are
26 different states the probability matrix will consist
of 26+6 elements. With presented probabilities pf , pr
we can calculate the probability transition matrix. For
example p11 =

∏6
i=1 pfi and p89 probability that the

system changes from the state 8 to the state 9 in the
Eq. 14, see the Tab. 1:

p89 = (1− pr1) · pr2 · pf3 · (1− pf4) ·
(1− pf5) · (1− pf6) = 0.64 · 0.36 · 0.005 ·

·0.997 · 0.996 · 0.997 = 0.0011. (14)

Tab. 1: Production of states.

state V1 V2 V3 V4 V5 V6 prod. w
1 1 1 1 1 1 1 210
2 0 1 1 1 1 1 150
3 1 0 1 1 1 1 60
4 1 1 0 1 1 1 80
...

...
...

...
...

...
...

8 0 0 1 1 1 1 0
9 0 1 0 1 1 1 80
...

...
...

...
...

...
...

23 0 0 0 1 1 1 0
...

...
...

...
...

...
...

64 0 0 0 0 0 0 0

Each element of transition probability matrix is a
result of multiplication of non-zero probabilities. Since
the probability matrix consists of non-zero elements
(some of them re close to zero), every state can be
reached from every other in time t = 1 the ana-
lyzed DTMC is irreducible and aperiodic. Because of
the DTMC is finite and irreducible it is also positive-
recurrent. Then we can use the Eq. 6 to calculate the
limiting distribution π. The Eq. 11 were solved numer-
ically by using the "backslash"(implemented solver of
linear equations) fromMatlab program. In Tab. 4 there
are presented few Elements of the 1st row of transition
probability matrix and limiting distribution π.

After calculating the transition probability matrix
P and the production of each state we can quantify
the reliability of the industry process. To describe the
reliability of the process we will calculate the expected
value of production. The expected value of production
W within time T is a sum of all expected values for each
time step t ∈ {1, 2, · · · , T}. In our case, the expected
value E(W )(t) of production for the certain time t is
equal to:

E(W )(t) =

t∑
i=1

~v(0)Pt ~W, (15)

where ~W is a vector of productions w of all 26 states.
The results for calculating an expected value of pro-
duction for time step 1 (time t) are presented in the
Tab. 3 (maximal production for one time step is 170).
According to the Tab. 3 we can conclude, that the ex-
pected value of production for the certain time quickly
converges to the limit expected value (π · w).
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Tab. 2: Input probabilities.

prob. V1 V2 V3 V4 V5 V6
pf 0.100 0.006 0.005 0.003 0.004 0.003
pr 0.360 0.360 0.400 0.375 0.240 0.190

Tab. 3: Calculation of expected value.

time expected value relative
expected value

1 201.8095 0.9610
2 197.2069 0.9390
3 194.5720 0,9265
4 193.0340 0.9192
5 192.1160 0.9148
6 191.5550 0.9121
7 191.2030 0.9105
8 190.9750 0.9094
∞ 190.4157 0.9067

Tab. 4: First row of transition probability matrix, limiting dis-
tribution π.

p1,1 0.8810 π1 0.7300
p1,2 0.0980 π2 0.2030
p1,3 0.0050 π3 0.0120
p1,4 0.0040 π4 0.0090
p1,5 0.0030 π5 0.0050
p1,6 0.0040 π6 0.0120
p1,7 0.0010 π7 0.0110
p1,8 5.1905e−5 π8 0.0030
...

...
...

...
p1,64 1.0800e−13 π64 8.8980e−11

6. Complexity of the
Algorithm

In this section we aim to estimate the complexity of
the Ford-Fulkerson (F-F) algorithm for calculating the
production ~W of all states. As a T (n) we will de-
note the worst-case time complexity of an algorithm
with the input of size n. The complexity of F-F algo-
rithm is T (n) = O(n3). In our case the size of input
n is equal to the number of vertices |V | of the net-
work. The algorithm should run up to 2|V |. Thus
T (n) < O

(∑|V |
i=1

(|V |
i

)
(i)

3
)
. The given formula is an

upper bound of complexity of the algorithm for search-
ing the vector of production ~W in a network. To be
able to estimate a complexity of the whole application
we have to add a complexity of matrix exponentiation
which is less than T (n) <

(
2|V |

)3
t and multiplication

of first row of transition probability matrix by the vec-
tor ~W which is equal tu 2|V |. The last form is not
very significant In comparison with complexity of ma-
trix exponentiation and calculating the vector ~W of
production.

The complexity of calculating the production ~W will
also depend on the amount of vertices of the network
and on the character of the network. Another way
how to decrease the amount of computation is to use
the minimal cut. Let Sf fail state be a state with zero
production w equal to zero. Let C denotes the set of
vertices of the state Sf . Clearly the edges incident with
C form the cut of the network. Any other state where
the vertices C are in failure has the zero production.

For example in the Tab. 1 we can see that the pro-
duction of the 8th (0,0,1,1,1,1) state is zero. Thus any
state (for example the 23rd state), where the first and
the second vertex is in fail has also the zero produc-
tion. For those states, there is no need to use the Ford-
Fulkerson algorithm to calculate the maximal flow. For
the large time t there would be more suitable to to use
limit probability distribution than to exponentiate the
matrix.

A problem could occur with saving the transition
probability matrix in the computer memory. An
amount of elements of the matrix grow exponentially
(22n) with an amount of elements of analysed systems.
The problem could by partially solved by rounding
small values to zero and save the matrix as a sparse
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matrix. In this case there should be more complicated
to proof the convergence of the DTMC. Another way
how to work with large matrices is to dived the DTMC
into more separate systems and calculate with their
transition probability matrix separately. Other possi-
bility how reduce the transition probability matrix is
to shorter the time step and define only one possible
change within the time step. It has the effect of sim-
plifying the transition matrix.

7. Conclusion

In the paper we have presented the application of graph
flow in the network in the reliability analysis. The main
worth of this work is an innovative usage of discrete
time Markov chains and the flow in network theory in
reliability analysis. The DTMC we used to describe
the changes of the analysed process. For calculating
for larger time step t, there is possible to use the lim-
iting distribution instead of exponentiate the probabil-
ity matrix. The Ford-Fulkerson algorithm was used to
compute the industry production of analysed system.
The main disadvantage of the presented approach is
a high computational complexity. In further research
there is possible to modify the Ford-Fulkerson algo-
rithm to be more suitable for our purposes.
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