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Abstract. In this paper, an investigation is made on
the superiority of fractional PID controller (PIαDβ)
over conventional PID for the cart-servo laboratory set-
up. The designed controllers are optimum in the sense
of Integral Absolute Error (IAE) and Integral Square
Error (ISE). The paper contributes in three aspects: 1)
Acquiring nonlinear mathematical model for the cart-
servo laboratory set-up, 2) Designing fractional and in-
teger order PID for minimizing IAE, ISE, 3) Analyzing
the performance of designed controllers for simulated
plant model as well as real plant. The results show a
significantly superior performance by PIαDβ as com-
pared to the conventional PID controller.
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1. Introduction

Fractional calculus [1] has recently found new applica-
tions in control engineering resulting in an area popu-
larly known as ’Fractional Order Control (FOC)’. FOC
is nothing but designing the controllers which are gov-
erned by fractional order the differential equations.
The compact form expressions of these controllers pos-
sess easily tunable characteristics for meeting stringent
loop performance [2], [3], [4], [5], [6].

The tuning of three-parameter fractional order con-
trollers such as PIα, [PI]α, PDβ , [PD]β has been ad-
dressed in the literature [7], [8], [9], [10], [11]. The
formulation in these works consists of a set of three
equations which are solved analytically or graphically.

Literature also covers tuning of five-parameter
PIαDβ controller to minimize certain performance in-
dices such as Integral Absolute Error (IAE), Integral

Square Error (ISE), etc. [12], [13]. This is an uncon-
strained, five-dimensional and multi-modal optimiza-
tion problem in which the objective function is opti-
mized with respect to five parameters. The works in
[12], [13] have considered linear plants. However, one
can also design IAE, ISE minimizing fractional con-
trollers for the given nonlinear plant model. A few
early works in this regard are seen in the literature [14],
[15], [16], [17] in which the superiority of fractional or-
der controllers over integer ones is investigated.

In the present paper, we explore further in this direc-
tion to examine the fractional superiority for cart-servo
lab set-up which contains a few nonlinear elements.

The major contributions of this paper are as follows:

• The mathematical model of the cart-servo lab set-
up is obtained which is further validated by per-
forming a model-matching test.

• For the acquired model, optimum fractional and
integer order PID controllers are designed so as
to minimize performance indices such as IAE and
ISE.

• The designed controllers are analyzed in detail for
their performance with the plant model as well as
real plant to examine the superiority of fractional
controllers.

Organization of the paper: Section 2 presents math-
ematical modelling of the cart-servo lab setup and its
validation using model-matching test. In section 3, pre-
liminaries of the fractional order control are discussed
and also the controller design problem for minimizing
performance indices such as IAE, ISE is explained. Sec-
tion 4 demonstrates the design of integer and fractional
order PID controllers to meet the control requirements.
Also, the performance of designed controllers is dis-
cussed and compared in section 4. Finally, section 5
provides the concluding remarks.
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2. Mathematical Modelling of
Cart-Servo Lab Set-Up

2.1. Plant Description

The original cart-pendulum lab set-up designed by
Feedback Instruments, UK consists of a cart moving
along a 1 metre long track [18]. The cart has a shaft
to which the pendulum is attached. The cart can move
back and forth causing the pendulum to swing.

For the cart-servo control purpose intended for the
current paper, the pendulum is detached from the
above set-up as shown in Fig. 1. The movement of
the cart is caused by pulling the belt in two directions
by the DC motor attached at one end of the rail. The
control task is to attain the desired cart position on the
rail which is realized by controlling the input voltage
to the motor.

Fig. 1: Cart-servo plant experimental set-up.

2.2. Model Identification

In model-based controller tuning approach, it is es-
sential to have the sufficiently captured mathematical
model for the real plant dynamics. It is carried out as
explained below.

• The equations governing cart-servo plant dynam-
ics are [18]:

Va −Kbωm = RmIa + Lm
dIa
dt
, (1)

Tm = KtIa, (2)

Tload = Tm − Jmαm −Bmωm, (3)

Fload = Tloadgr, (4)

Fload = Mcac +Bcvc + Ffrict. (5)

• Incorporating Eq. (1), Eq. (2), Eq. (3), Eq. (4),
Eq. (5) along with the current-loop type of power
amplifier dynamics [18], we construct the complete
mathematical model of the cart-servo set-up as
shown in Fig. 2. In Fig. 2, the gray shaded blocks
are the nonlinear elements present in the system.
Also, the cart auxiliary velocity vcd has been ob-
tained from cart velocity vc to eliminate the ‘al-
gebraic loop’ while simulating the mathematical
model. (Note: Table of parameters and the table
of variables have been given in Tab. 1 and Tab. 2.)

• To define the nonlinear relation between [Ffrict,
Reset] and [Fload, vcd], we propose the following
embedded MATLAB code (Refer the block, ’Cart
Friction Model’ in Fig. 2):

function[Ffrict, Reset] = cartfrict(Fload, vcd)
fr = 1.68;Mc = 2.3;Ts = 0.0001;
Fc = fr ∗ sign(vcd); %fr = frictioncoefficient,
Ts = SamplingInterval
if vcd == 0
Fc = fr ∗ sign(Fload);
end
if vcd == 0
if abs(Fload) < fr
Reset = 1;Ffrict = Fload;
else
Reset = 0;Ffrict = fr ∗ sign(Fload);
end
else
vc2 = vcd + (Fload − Fc)/Mc ∗ Ts;
if((sign(vc2 ∗ vcd) < 0)&&(sign(Fload ∗ vc2) < 0))
||((sign(vc2 ∗ vcd) < 0)&&
((sign(Fload ∗ vc2) > 0)&&(abs(Fload) < fr)))
Reset = 1;Ffrict = Fload;
else
Reset = 1;Ffrict = Fload;
end
end

2.3. Model-Matching

In order to validate the acquired model as shown in
Fig. 2, we perform a model-match test. For this pur-
pose, a sweep signal of amplitude 0.2 is generated 1.
The sweep signal is given as an input to a closed loop

1The sweep signal is a composite signal which is constructed
by the sine-waves of different frequencies such that the time in-
stance at which one sine-wave ends, the other one begins.
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Tab. 1: Table of parameters.

Description Symbol Unit Value
Power amplifier input voltage saturation limit Vc V 2.5
Power amplifier supply voltage saturation limit Vs V 24

Power amplifier current loop gain K1 - 1
35

Power amplifier forward gain K2 - 200
Motor armature resistance Rm Ω 2.5
Motor armature inductance Lm H 0.0025
Motor back-emf constant Kb V/(rad/sec) 0.05
Motor torque constant Kt N-m/A 0.05

MI of motor rotating assembly Jm Kg-m2 0.000014
Viscous damping coefficient of motor shaft Bm N-m/(rad/sec) 0.000001
Rotary to linear motion conversion ratio gr m−1 600

Viscous damping coefficient of cart Bc N-m/(rad/sec) 0.00005
Mass of cart Mc Kg 2.3

Second order filter natural frequency ωf rad/sec 2215.7
Second order filter damping factor ζf - 0.7

Tab. 2: Table of variables.

Description Symbol
Armature voltage Va
Armature current Ia
Motor torque Tm
Load torque Tload
Load force Fload

Friction force Ffrict
Motor shaft angular velocity ωm

Motor shaft angular acceleration αm
Cart position xc
Cart velocity vc

Cart auxillary velocity vcd
Cart acceleration ac

system which contains simulated/real plant with unity
gain controller.

The response is as shown in Fig. 3. It is seen from
Fig. 3 that the responses for simulated as well as real
plant are close enough to confirm sufficient capture of
plant dynamics in its mathematical model.

The response to the sweep signal is composed of
responses to each (frequency) sine-wave in the corre-
sponding time-intervals. By considering the fundamen-
tal harmonic in such an output response corresponding
to each sine-wave, one can construct the frequency re-
sponse of the closed loop system. We obtain the closed
loop frequency responses with real and simulated plant
as presented in Fig. 4.

The mathematical model (refer Fig. 2) consisting
of elements such as Cart-Friction Model, current loop
power amplifier, etc. sufficiently captures the lower
mode dynamics of cart-servo which is in the required
control-passband frequency range. High frequency

phenomena such as mechanical vibrations, switching
in power amplifier circuits, high frequency noise sig-
nal etc. have not been taken into consideration while
modelling. Therefore, one can see in Fig. 4 that the fre-
quency responses with simulated and real plant match
closely for the lower range of frequency while there is
a mismatch between these responses at the higher fre-
quency side.

3. Basics of Fractional
Controllers and Controller
Design Problem

3.1. Preliminaries of Fractional
Controllers

1) Fractional Calculus

Conventional calculus deals with integer order differ-
entiation and integration. Generalization of conven-
tional calculus so as to consider differentiation and in-
tegration of any order (not necessarily integer) leads to
’Fractional Calculus (FC)’ [1]. In FC, the fundamental
differ-integration operator aDα

t (where a and t are the
limits of the operation) is defined as [2]:

αDαt =


dα

dtα α > 0

1 α = 0∫ t
a
(dτ)−α α < 0

, (6)

where α is the order of the operation, generally α ∈ R
but α could also be a complex number.

Out of many definitions of fractional differ-
integration in FC, the popular ones are [2]:
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Fig. 2: Mathematical model of cart-servo plant.

Fig. 3: Closed loop response with real and simulated plant to sweep signal.

• Grunwald-Letnikov Definition:

αDαt f(t) = lim
h→0

1

hα

[ t−ah ]∑
j=0

(−1)j
(
α
j

)
f(t− jh), (7)

where,
[
t−a
h

]
truncates t−a

h to an integer.

• Riemann-Liouville (R-L) Definition:

αDαt f(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(τ)

(t− τ)α−n+1
dτ,

(8)
where n is an integer, a is a real number, and α
satisfies (n− 1) ≤ α < n.

• Caputo Definition:

aD
α
t f(t) =

1

Γ(n− α)

t∫
a

f (n)(τ)

(t− τ)α−n+1
dτ. (9)

2) Fractional Order Transfer Function
Model

The equation of Laplace transform for the defined
fractional-order operator is [2]:

L(aD
α
t f(t)) = sαF (s), (10)
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Fig. 4: Closed loop frequency response with real and simulated plant.

with zero initial conditions.

Linear time invariant fractional model of a system
with input u, and output y takes the following form
[2]:

anD
αny(t) + an−1D

αn−1y(t) + ...+ a0D
α0y(t)

= bmD
βmu(t) + bm−1D

βm−1u(t) + ...+ b0D
β0u(t),

(11)

where, ai, αi (i = 0, 1, . . . , n), bk, βk (k = 0, 1, . . . ,m)
are real constants. n and m are positive integers.

Therefore, Laplace transform on both sides (assum-
ing zero initial conditions) results into the following
transfer function:

Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + ...+ b0s

β0

ansαn + an−1sαn−1 + ...+ a0sα0
. (12)

3) Fractional Order Controller

From control engineering point of view, the application
of FC can be in either system modelling or controller
design. The typical fractional order controllers C(s)
found in the literature are as follows:

Fractional order proportional-integral controller,
which is of two types [9]:

• PIα

C(s) = Kp

(
1 +

Ki

sα

)
. (13)

• [PI]α

C(s) = Kp

(
1 +

Ki

s

)α
, (14)

with α = 1, we get Integer PI of the form: C(s) =
Kp

(
1 + Ki

s

)
.

Fractional order proportional-derivative controller,
which is of two types [7], [8]:

• PDβ
C(s) = Kp

(
1 +Kds

β
)
. (15)

• [PD]β

C(s) = Kp (1 +Kds)
β
, (16)

with β = 1, we get Integer PD of the form: C(s) =
Kp (1 +Kds).

Fractional order proportional-integral-derivative
controller [2]:

• PIαDβ

C(s) = Kp

(
1 +

Ki

sα
+Kds

β

)
, (17)

with α = 1, β = 1, we get Integer PID of the form:
C(s) = Kp

(
1 + Ki

s +Kds
)
.

3.2. Design of Optimum Controller
to Minimize IAE, ISE

The typical unity feedback control system is shown in
Fig. 5. r(t), e(t), u(t), and y(t) denote reference input,
error, controller output, and plant output respectively.

The following performance indices are considered:

• Integral Absolute Error (IAE):

J =

∫ ∞
0

|e(t)|dt. (18)
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Fig. 5: Typical unity feedback control system.

• Integral Square Error (ISE):

J =

∫ ∞
0

|e(t)|2dt. (19)

Let e(kT ) be the sampled value of the error e(t)
at an instant (kT ), where T is the sampling inter-
val. k=0,1,...,N . For the given T,N is an integer
which depends on the time span considered for com-
puting e(t). The following cost functions are consid-
ered corresponding to the performance indices defined
in Eq. (18), Eq. (19):

• IAE cost function:

Jc =

N∑
k=0

|e(kT )|T. (20)

• ISE cost function:

Jc =

N∑
k=0

|e(kT )|2T. (21)

Each performance index emphasizes different aspects
of the system response [19]. Large errors contribute
more in ISE than IAE. Consequently, the controller
tuned for minimizing ISE ensures lower overshoot in
the transient response than IAE minimizing controller.
The ISE, however tends to give larger settling time.

For the optimum performance of control system, con-
troller parameters are tuned by minimizing the selected
performance index.

4. Design and Performance
Analysis of Integer and
Fractional PID for
Cart-Servo

Mathematical model of the cart-servo plant (as devel-
oped in Section 2) is considered for designing PIαDβ
and PID controllers (refer Eq. (17) for the controller
structure). The controller design problem for minimiz-
ing IAE and ISE (as discussed in Section 3) is solved
numerically with MATLAB using fminsearch() func-
tion.

While tuning, a step input of 0.2 m is given to the
closed loop system for 10 sec. The sampling interval is
taken as 0.001 sec. The search space for the controller
is limited by assigning certain bounds to its parame-
ters. Fractional order integration and differentiation
are ensured by choosing α ∈ (0, 1) and β ∈ (0, 1) re-
spectively. In PIαDβ controller, if α = 1 and β = 1,
it becomes the PID controller. Therefore, to elimi-
nate the case of PID while tuning PIαDβ , the values
α = 1 and β = 1 are not included in the bounds for α
and β. The bounds for Kp, Ki and Kd (Kp ∈ (0, 15],
Ki ∈ (0, 5], Kd ∈ (0, 1]) have been suitably chosen by
referring their typical values for the design examples
given in the manual [18]. However, one is free to choose
any other valid bounds. For the selected bounds, the
emphasis is on the investigation of possible superior
performance by PIαDβ over PID.

Oustaloup [20] approximated transfer function
model of the PIαDβ controller is considered for the
simulation. The order of Oustaloup approximation is
taken as 7 and the approximation is valid over the fre-
quency range [0.001,1000] rad·s−1.

After the design, controllers are tested with simu-
lated as well as real plant. The results are presented
in Tab. 3 and Tab. 4. The following conclusions are
derived based on Tab. 3 and Tab. 4:

• For simulated plant, fractional PID reduces JIAE
by nearly 65 % and JISE by nearly 62 % as com-
pared to integer PID.

• For the real plant case, fractional PID reduces
JIAE by nearly 75 % and JISE by nearly 65 %
as compared to the integer PID.

• The differences in the performance index values
obtained for simulated and real plants are due to
slight imperfections in the captured plant dyna-
mics.

Figure 6 presents cart-position and error signals for
the closed loop system with simulated plant and frac-
tional/integer PID controller tuned for IAE minimiza-
tion. A step signal of amplitude 0.2 m is given for
10 sec duration as input. The corresponding response
with real plant is shown in Fig. 7. The responses for
ISE minimization case are shown in Fig. 8 and Fig. 9.

From Fig. 6, Fig. 7, Fig. 8, Fig. 9, we observe that
the cart-position response with fractional PID shows
significantly smaller rise time, settling time, peak over-
shoot as compared to the integer PID. This means that
the performance with fractional PID is far superior over
its integer counter part for cart-servo lab set-up.
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Tab. 3: IAE for designed controllers with simulated and real plants.

Performance Controller Reduction in
Index PID PIαDβ Performance

Kp = 14.9815, Kp = 1.3124, Ki = 4.9906, Index with
Ki = 2.7509, α = 0.1874, Kd = 2.9322, PIαDβ over
Kd = 0.5 β = 0.5452 PID (%)

IAE Jsimulated 0.1562 0.0551 64.725
Jreal 0.1636 0.0393 75.978

Tab. 4: ISE for designed controllers with simulated and real plants.

Performance Controller Reduction in
Index PID PIαDβ Performance

Kp = 14.9762, Ki = 3.2929, Kp = 4.999, Ki = 4.7835, Index with
Kd = 0.5001 α = 0.0535, Kd = 0.8685, PIαDβ over

β = 0.7384 PID (%)
ISE Jsimulated 0.0120 0.0046 61.667

Jreal 0.0128 0.0045 64.844

Fig. 6: Step and error response with simulated plant (IAE min-
imization).

Fig. 7: Step and error response with real plant (IAE minimiza-
tion).

5. Conclusion

The paper presented the ability of fractional PID con-
troller (PIαDβ) to produce superior performance over
conventional PID for cart-servo lab set-up. For this
purpose, these controllers were designed for the ac-
quired mathematical model of the plant so as to mini-

Fig. 8: Step and error response with simulated plant (ISE min-
imization).

Fig. 9: Step and error response with real plant (ISE minimiza-
tion).

mize performance indices, IAE and ISE. The designed
controllers were tested with the simulated as well as
real plant. It was observed that the fractional PID
outperformed integer order PID by significantly reduc-
ing the performance indices (more than 60 % in each
case).
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