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Abstract. The implementation value of multi-output
Boolean functions in logic synthesis FPGA can be re-
duced by using Walsh spectral representation. This pa-
per proposes an algorithm for calculating the maximum
coefficient of the autocorrelation function of BF without
generating a truth table, using the heuristic procedure
limits the maximum autocorrelation coefficients of sort-
ing on a small subset of the function. We also suggest a
spectral technique of the linear function transformation
defined by disjoint cubes. This method for decomposi-
tion of BF, which allows to reducing the complexity of
the linear part of the corresponding blocks about 25–
55 %, and the complexity of the nonlinear part of the
blocks do not increase more than 10 %, compared to the
traditional approach.

Keywords

Autocorrelation, Boolean function, disjoints
cubes, logic synthesis, Walsh spectrum.

1. Introduction

There are two popular categories of field programmable
gate array (FPGA) block structures, namely Look-
Up Table-based (LUT) and multiplexor-based (MB);
the resulting architectures are called LUT-based and
MUX-based architectures respectively [1].

The basic block of an LUT architecture is a look-up
table that can implement any Boolean function of up
to m inputs, m ≥ 2. For a given LUT architecture,
m is a fixed number. In commercial architectures, m
is typically between 3 and 6. An m-LUT is typically
implemented by static random access memory (SRAM)

that has m address lines and 1 data line. An m-LUT
can implement any Boolean function of up to m inputs.

In MB architecture core logic element has a structure
consisting of configuration multiplexers. An example
is the architecture proposed by Actel [5], in which the
base unit has a configuration comprising three elements
of the multiplexer; and/or series of logical blocks sep-
arated trace channels, consisting of the actual trace of
the system and global synchronization [1], [2] and [3].

In this paper will be used architecture LCA (Logic
Cell Array) type TLU of Xilinx Company, base on con-
figurable logic blocks (CLBs), are bigger and more com-
plex than the Actel or QuickLogic cells. The Xilinx
LCA basic logic cell is an example of a coarse-grain
architecture. The Xilinx CLBs contain both combina-
tional logic and flip-flops [4].

The first generation of LCA devices appeared in
1985. They consist of logical blocks that include the
generator combination of functions that implements
the 4-input foundation, and the only element of mem-
ory and the trigger. Family of crystals marked with
the symbol XC2000 and had two structures with con-
ventional equivalent complexity from 1200 to 1800 two-
input elements (gates).

The second generation of LCA devices, which ap-
peared on the market in 1987, included the logic blocks,
extended to implement the 5-input foundation, as well
as containing two triggers. Corresponding family of
crystals marked with the symbol XC3000 and had five
structures, ranging in complexity from 1200 to 5000
gates. Clock frequency XC3000 reaches 125 MHz,
which is equivalent to clock frequency of the system
in the 30–40 MHz.

The third generation of LCA devices appeared in
1991. It further increased the possibilities of this ar-
chitecture. In addition, in this series for the first time it
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was possible to reconcile the memory of a random sam-
ple and a combinational logic on a single chip. Corre-
sponding family of crystals be marked XC4000, has ten
structures, ranging in complexity from 2000 to 20000
gates. System clock frequency is 60–70 MHz, which is
approximately higher than two times in the previous
series.

The main drawback of the crystals XC4000 is the
underutilization of their resources. The maximum "oc-
cupancy" of the crystal does not exceed 70–80 %, since
the greater utilization of the crystal having trouble
tracing. To solve this problem, the fourth generation
architecture of the crystals (series XC5200), submit-
ted in 1996, was redesigned in the direction of greater
"traceability" and the possibility of more "waste" of re-
sources. XC5200 family has five structures, ranging in
complexity from 2000 to 23000 gates with the system
clock frequency of 50 MHz.

As already mentioned in this paper, the main dif-
ference between the latest developments in the area of
the LCA devices, will based on static memory technol-
ogy is to improve the characteristics of the trace of the
crystal. Thus, the analysis of architecture and technol-
ogy of FPGA allows us to conclude that, in addition to
common for the entire microelectronics industry trends
to increase the degree of integration, improving over-
all performance, reduce costs, etc., the new trend is
the increased ease of design and debug circuits. How-
ever, increasing complexity of both the integrated den-
sity and application requirements become higher every
pasing day. Those are questions of design and devel-
opment of algorithms for automatic logic synthesis. It
follows that the main problems of logic synthesis in the
FPGAs minimize the number of used logic blocks and
reduce the complexity of the trace.

2. Spectral and Correlation
Analysis of Boolean
Functions

We use the definition of BF in the monographs [6],
where they are treated as multi-dimensional functions
with m-inputs and k -outputs, and carry out mapping
of the form f :{0,1}m → {0,1}k. Set of outputs is de-
noted as BF f k−1, ... f 0, and used the decimal indices
x = (Xm−1, ... X 0) ∈ 0,1m is calculated the formula:

x =

m−1∑
i=0

xi2
i, (1)

f = (fk−1, ...f0) ∈ 0, 1k, f =

k−1∑
i=0

fi2
i, (2)

where x and f can be interpreted as the coordinates
of the binary vectors to decimal numbers. Note that
the Eq. (1) and Eq. (2) describe the BF as a piecewise
constant function F(x) of real argument on the half-
open interval [0.2 m]. With this notation system of BF
can be represented as a lattice of y = f(x), defined at
the points 0, 1, ... , 2m -1 interval [0, 2m]. Extend the
function y = f(x) to piecewise constant function F(x)
as follows:

F (x) = f(δ) variations x ∈ [δ, δ + 1]. (3)

We say that a piecewise constant function F(x) rep-
resents the original system of BF, if it satisfies the con-
dition in Eq. (3) and f(x) is constructed by equations
Eq. (1) and Eq. (2). Thus, the foundation can be de-
scribed as a vector F=[f (0),f (l), ..., f (2m-l)]T , where
x=(xm−1, ..., X 0), (0 < x < 2m−l) - a set of input vec-
tors, and f(x) is an integer value, here F i=[f i(0), f i(l),
...., f i(2m-l)]T , and f i(x), 0< i < k − l, is a binary
value.

It is known that between BF and Walsh functions,
there is a relationship, which explains the possibility of
effective use of spectral analysis in the basis of Walsh
functions to analyze the fleet. In order to determine
this relationship, we consider details of the Walsh func-
tion. These functions are piecewise constant and are
given on the half-open interval [0, 2m] expression:

Wω(x) = (−1)

ω−1∑
i=0

ω(m−l−i)2

,
(4)

where 0< ω < 2m − 1,m ∈ N , and ωi and xi are
determined from the binary representations ω and x.

Autocorrelation function of BF f (x 0, x 1, ..., xm−1)
is determined on the basis of relations:

Bf ;f2 (τ) =

2m−1∑
x=0

f(x)f(x⊕ τ), (5)

where τ ∈ 0, 1, ..., 2m-1. As seen from Eq. (5), the orig-
inal function is related to the autocorrelation function
of convolution transforms. Cross-correlation or simply
the correlation function of two BF f 1(x ) and f 2(x ) is
the function:

Bf1;f22 (τ) =

2m−1∑
x=0

f1(x)f2(x⊕ τ), (6)

where τ ∈ 0, 1, ..., 2m-1. Establish a connection be-
tween the correlation functions and features considered
earlier Walsh, also known as Wiener-Khinchin theorem
[7] and [8]:

Bf1;f22,2 = 22mW (W (f1)W (f2)). (7)

Properties of the correlation characteristics of BF de-
termined by the properties of convolution transforms
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of the original features. In particular, the form of these
transformations implies the invariance of the correla-
tion characteristics to shift the argument of the orig-
inal. Converse is also true that the autocorrelation
function of the original function can be restored up to
a shift of the argument.

The complexity of BF is usually understood as the
minimum number of two-input elements necessary for
the construction of the scheme; it realizes that the com-
plexity criteria are now known a lot. The simplest
and most natural criterion of BF f (x0, x1, ..., xm−1),
xi ∈ {0, 1}, i=1, ..., n-1 is the number µ0(f ), (µ0(f )
≤ m), which equals the number of arguments to this
function, from which it depends, it is assumed that the
function essentially depends on the arguments x i, if
there are α, β ∈ {0, 1}, such that for any set of argu-
ments (x 0, ..., x i−1, x i+1, ..., xm−1) value with f (x0,
..., xi−1, α, xi+1, ..., xm−1) 6= f (x0, ..., xi−1, β, xi+1,
..., xm−1), [9].

This criterion is called the µ0, we note that this as-
sessment is quite easy to get, but it is µ0 criterion of
BF very weakly associated with specific properties of
the original BF.

Frequently uses criterion of BF µ1. To determine
this, we use the notion of Hamming distance in the
discrete Euclidean space, i.e. if x1 = (x01, ..., x

m−1
1 )

and x2 = (x02, ..., x
m−1
2 ); (x(i)1 , x(i)2 ∈ {0,1}) then the

Hamming distance between x1 and x2 will be:

d(x1, x2) =

m−1∑
i=0

| x(i)1 − x
(i)
2 | . (8)

Then the complexity of BF µ1(f ), we mean the num-
ber of vectors pairs {x1, x2} with Hamming distance
between them d(x1, x2) = 1 such that f (x1) 6= f (x2).
Similarly, we introduce criteria of BF µr, where r =
d(x1, x2). Strength criteria with increasing r, but also
increases the complexity of their calculation are deter-
mined by Crm 2m. Note that µ-criteria of BF may be
related to their correlation functions. Indeed, since the
number of true minterm at a distance, for example, 1
corresponds to the values of the autocorrelation func-
tion of BF in points τ = 1, 2, 4, ..., 2m-1, then the
function

ψ(f) =
∑

τ=1,2,4,...,2m−1

B(f,f)(τ), (9)

can be regarded as a measure of simplicity of this func-
tion, and, as shown in [7], µ(f ) = km2m-1-ψ(f ). Con-
sider a set ofm linear transformations of the arguments
of the original BF f (z ). BF obtained to be denoted as
f i(z ), and their autocorrelation functions - as Bi(τ);
moreover:

B(τ) =

m−1∑
i=0

Bi(τ). (10)

Denote

B(T ) =

m−1∑
i=0

B

(
m−1∑
q

τq,s2
m−1−q

)
, (11)

where T = (τqs), τ ∈ {0, 1} and (q, s = 0, l, ..., m-l).
It is obvious that the function B(T) holds Karpovsky
theorem [7], whose formulation is given below.

Let maxT 6=0B(T )=B(T η) then ση+Tη=Em(mod2).

Here | T | - determinant T, Em - identity matrix size
m×m. The importance of this theorem is due to the
fact that its use can introduce the concept of an opti-
mal linear transformation of the arguments given BF
ση. It consists of the following: conversion ση, corre-
sponding theorem Karpovsky, considered the optimal
linear transformation of the arguments of BF by the
criterion η.

3. Decomposition of the
Boolean Function

Assume that the BF is implemented using a logic block,
shown in Fig. 1 and its decomposition - a block in
Fig. 2. Thus, under the decomposition of BF realize
its expansion on the linear σ and non-linear fσ part.

Fig. 1: Original function.

Fig. 2: Linear decomposition.

In the literature [10] is used and the more generalized
notion of decomposition, called splitting decomposition
or disjoint decomposition. This kind of decomposition
illustration in Fig. 3 (in all figures the input variables
are designated as x = (xm−1, ..., x0), and the termina-
tion as f = (fk−1, ..., f0); study of disjoint decomposi-
tion foundation is dedicated to monograph [7].

Consider the disjoint-decomposition for different
numbers of input variables.

• For 2 variables, there is only one type of decom-
position, shown in the Fig. 4a.

• For the 3 variables are known, as illustrated in
Fig. 4b, has two types of decomposition, the total
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number of functions involved in it will be C2
3 +

C2
3 .

• For 4-input variables, number of types of decom-
position is three with the total number of functions
C3

4 + C2
4 + C1

4 , as shown in Fig. 4c.

• For 5 variables will be four types of decomposition,
the total number of functions involved C4

5 +C3
5 +

C2
5 + C1

5 , as shown in Fig. 4d.

Fig. 3: Splitting decomposition.

Fig. 4a: Disjoint-decomposition for 2 input variables.

Fig. 4b: Disjoint-decomposition for 3 input variables.

Fig. 4c: Disjoint-decomposition for 4 input variables.

Fig. 4d: Disjoint-decomposition for 5 input variables.

From the analysis of above sections, it follows that
for any m input variables exist (m-1) BF type (variant),
its decomposition, which involves functions

∑m−1
i=1 Cim.

Using the rule of common geometric progression, we
estimate the upper limit of the functions mentioned
below. Then we obtain:

m−1∑
i=1

Cim ≤
m∑
i=1

Cim = 2m,

m∑
i=1

Cim = 2m+1 − 1.

(12)

Note that this number is negligible to compare with
the total number of BF in m variables.

As shown in [8], the proportion of linear BF volume
sets, these functions are involved in the disjoint decom-
position and all of BF can be roughly illustrated by
Fig. 5, where the set of BF, close to the line, indicated
by a dotted line .

Fig. 5: The conditional distribution functions representation.

4. Linearization Algorithm

The theorem Karpovsky [7] allows finds the linear
transformation ση, construct the autocorrelation func-
tion B(t) is the original BF and m linearly independent
samples of its arguments, such that the sum of B(t)
for these samples is maximal. These m samples can
be found as follows: if we find s samples (1 ≤ s ≤ m),
which is denoted as t0, t1, ..., ts−1, then (s+1) - reading
ts from the condition:

B(τs) = maxr/∈%sB(τ). (13)

Here Qs - the set of all linear combinations of vectors
~τ0, ~τ1, ..., ~τs−1 and vector (00...0) modulo 2; τi - vector
of the binary expansion of ti. We can show that found
~τ0, ~τ1, ..., ~τs−1 thus form the columns of Tη. Then the
transformation matrix ση, the optimal criterion η, can
be determined by Tη. In addition, to find a linear
transformation ση, the optimal criterion η, can use the
following recursive procedure: Let T - matrix of size
m ×m, such that T = τ0, τ1, ..., τm−1 (τi – raw size
m× 1), other τ0 is found from the expression:

• Calculated autocorrelation coefficient of BF
B(τ0) = max|r|6=0B(τ).
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• Take L0 = {C0τ0 | C0 ∈ {0; 1}} , so L0 = {0; τ0}.
τ1 is as B(τ1) = max|r|6=L0

B(τ).

• When τ0, τ1, ..., τs−2 found, take Ls−2 ={
⊕s−2i=0Ciτi

}
, Ciin{0; 1} and τs−1 defined as

B(τs−1) = max|r|6=Ls−1
B(τ).

• Desired transformation ση = T−1. Thus, the lin-
ear transformation of the BF arguments, the op-
timal criterion η, is given by:

zi = ⊕m−1j=0 σijxm−1−j , 0 ≤ i ≤ m− 1. (14)

In this case, the sum modulo 2 can be realized in zi,
require many inputs, how many units contained in the
i-th row, that is ση, in the worst case complexity of
linear part of the BF is proportional to the square of
the number of input variables, since the matrix ση can
contain m× (m− 1) of non-zero values. The nonlinear
part fσ of BF can be calculated by multiplying each
minterm (xm−1, ..., x0) in the matrix σ. The resulting
vector will be minterm nonlinear part fσ of the BF.

To illustrate this fact consider the follow-
ing example. Assume that the operation de-
scribed by summing the decimal function f (x3,
x2, x1, x0) = 2(x3 + x1) + x2 + x0. Con-
struct a function F = [f(0), f(1), ..., f(2m − l)]T =
[0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6]

T ; We note that
the i-th column of F - is the decimal representation
of the binary digital signal in the output of three bit
adder contained in the i-th column of the truth table.

Calculating the autocorrelation function F
on Wiener-Khinchin theorem [8], we have B =
[22, 8, 10, 6, 8, 16, 6, 14, 10, 6, 18, 4, 6, 14, 4, 12]. Next,
we use the linearization procedure of BF, as described
above: after deleting the coefficient B(0), we find
that the maximum coefficient of the autocorrelation
function of BF is 18 with the number of columns
(address) τ0 = 10, which corresponds to the binary
representation of 1010. Thus, L0 = {0, 10}. Then,
strike out from the vector in the term l0 find that
following its maximum rate is 16 and is located at 5.
Thus, τ1 = 5 = 0101, L1 = {0, 10, 5, 15}. Similarly,
we find that τ2 = 7 or 13. Arbitrarily choose a value.
Let it be 13 (1101); L2 = {0, 10, 5, 15, 13, 7, 8, 2}.
Note that the L2 will remain the same regardless of
the choice, because it contains a linear combination of
13 and 7. Similarly, we have τ3 = 1 = 0001. Then:

T =

 1 0 1 0
0 1 1 0
1 0 0 0
0 1 1 1

 = [τ0, τ1, τ2, τ3] , (15)

σ = T−1 =

 1 0 1 0
0 1 1 0
1 0 0 0
0 1 1 1

 . (16)

Thus, during decomposition of BF initially imple-
mented block σ, which translates as if the original set
of input variables x in a different set of z, conversion
between them is as follows: fσ(z) = fσ(x) = fσ(σx),
f0(σx) = f(Tz). As an example, consider z = (0010)
= 2;

T =

 1 0 1 0
0 1 1 0
1 0 0 0
0 1 1 1

 ·
 0

0
1
0

 =

 1
1
0
1

 . (17)

Thus, f (1101)= fσ(0010)=fσ(2)=4, a Fσ described as
[0, 1, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 6, 5, 2, 3]

T .

The main drawback of the above methods of decom-
position of a BF is the fact that for the calculation of
the autocorrelation function for the Wiener-Khinchin
theorem requires a truth table of this function, result-
ing in a double need to apply the procedure of transfor-
mation that requires a m ·2m+1 elementary operations.
And after the construction of the matrix σ, you want
to convert the original truth table of f in the truth ta-
ble of the function fσ, resulting in the computational
complexity of the problem of decomposition increases
exponentially with the number of variables, and mem-
ory requirements, as well as high-speed computers have
become unacceptably large.

This paper proposes a procedure for calculating the
maximum coefficient of the autocorrelation function of
BF without generating a truth table, using the heuris-
tic procedure limits the maximum autocorrelation co-
efficients of sorting on a small subset of the function
on the basis of the Varma-Trachtenberg method [11].

5. Disjoint Cubes Performance
Analysis

The intersection of two cubes Ci and Cj is the cubic
Cl, whose coordinates are defined as follows [9]:

Tab. 1: Intersection coordinates Ci.

xip
xli 0 1 -

xjp 0 0 ∅ 0
1 ∅ 1 1
- 0 1 -

Tab. 2: Intersection coordinates Cj .

xip
xli 0 1

xjp 0 0 0
1 0 1
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Cl is empty (there is no intersection), if at least one
xli = ∅ or zlj = 0 for all l(0 ≤ l ≤ k − 1).

A set of cubes representing the function f, called a
covering of C(f), and the number of elements of the
covering C is its size.

Pair-wise intersection (PWI) the set of cubes C -
is a set of non-empty cubes are pair-wise intersection
of all the cubes of a given set of Ci and Cj , i 6= j.
In this case, PWI (C ) covers all values of the original
features that are included in more than one cube of the
function.

Weight w(Ci) of the cube Ci is the number of values
of the original function, its covering. That is, w(Ci) =|
z | 2d, where | z | - number of units in the Ci and d -
a number of uncertainties in Ci.∑

Ci ⊕ τ =
(
xim−1 ⊕ τm−1, ..., xi0 ⊕ τ0, zik−1, ..., zi0

)
,

where τ = (τm−1, ..., τ1, τ0) and

xji ⊕ τj =
{

−;xji = −;
xji ⊕ τ

i
j ;x

i
j ∈ {0; 1}

}
, (18)

for a set of cubes C,C ⊕ τ = {Ci ⊕ τ | l ≤ i ≤ C |}.

Define the excess covering logical function f, which
can be obtained from the minimum cover the following
logical. C =

⋃N
i=0 C

i, here C0 = C(f) by definition,
and Ci+1 = PWI(Ci), CN+1 = CN or CN+1 = ∅.

Define a symbol for each cube in C :

sign(w(Ci)) =
{

+, if Ci ∈ Cj and j − even
−, if Ci ∈ Cj and j − even

}
. (19)

Note that the properties of cubes, described above,
provide an opportunity to perform arithmetic opera-
tions on the logical surface, where the elementary set
may include more than one value of the original func-
tion. At the same time, the operations of calculating
the spectrum and autocorrelation functions are arith-
metic functions with sets of given values in elementary
form. This fact allows us to obtain a definite advan-
tage in computational complexity by using operations
on the cubes to decompose BF. For example, to calcu-
late the number of unit values of BF simply adds the
weights of all cubes in C, since this amount is charac-
terized by the number of elementary sets contained in
a cube. The sign of a cube shows whether the weight
is added to or subtracted from the weight of the other
cubes, as a result, removes duplicate sets, and the situ-
ation becomes as if each elementary set was presented
once.

Coefficient of the autocorrelation function of BF
with B(τ) can be calculated for any τ(0 ≤ τ ≤ 2m−1)
by adding (with sign) the weights of all cubes in
C(f(x)∩C(f(x⊕ τ)). The proof of this fact is consid-
ered in detail [13]. From this analysis that is possible to

calculate the autocorrelation function of BF without a
truth table. To illustrate the above assertion, consider
the following example.

Let BF f is presented in the following cover: C1 =
{C0

1 ∩ C0
2 , C

0
2 ∩ C0

3 , C
0
2 ∩ C0

2} = {∅, [1100],∅} =
{[1100]}; C2 = ∅.

C(f) =

 − 1 0 −
0 0 − −
1 − − 0
1 1 0 0

 . (20)

And the weight of all the cubes w(C1) = 4, w(C2) =
4, w(C3) = 4, w(C1) = −1.

Then B(τ) with τ = 0 equals the total number of
minterm, i.e. B(0) = 4+ 4+4− 1 at τ = 1 point B(1)
equal to the sum w(Ci), Ci ∈ C(f(x)) ∩ C(f(x⊕ 1)):

C(f ⊕ 1) = C(f)⊕ (0001)

[
− 1 0 −
0 0 − −
1 − − 1

]
, (21)

C(f) ∩ C(f ⊕ 1) =

 − 1 0 −
0 0 − −
1 1 0 0
1 1 0 1

 , (22)

C(f(x) ∩ f(x⊕ 1)) =


− 1 0 −
0 0 − −
1 1 0 0
1 1 0 1
1 1 0 0
1 1 0 1




+4
+4
+1
+1
−1
−1

 , (23)

B(l) = 4 + 4 + 1 + 1− 1− 1 = 8. (24)

It is obvious that finding the maximum coefficients
of the autocorrelation function requires going through
all the values of their coordinates. However, there is
a way to limit the enumeration to only those coordi-
nates, the values of autocorrelation coefficients which
are maximal with the highest probability. That is,
should examine only those τ , whose units are in the po-
sitions corresponding to the uncertain positions in the
cubes of the original function with a maximum value
of weights, since the intersection of f(x) and f(x ⊕ τ)
vector τ should make minimal changes to the original
cover for the largest weights of cubes in the cover.

For example, for:

C =

 − 1 0 −
0 0 − −
1 − − 0
1 1 0 1

 . (25)

All τ species (τ3, 0, 0, τ0) have no effect on C1. Sim-
ilarly, (0, 0, τ1, τ0) and (0, τ2, τ1, 0) have no effect on
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C2 and C3, respectively. The result should be consid-
ered only cubes with more weight, so that C4 is not
taken into account. In this case, two non-zero vec-
tor is most likely to correspond to the coordinates of
the maximum values of autocorrelation function – is
(0, 0, τ1, τ0) ∩ (τ3, 0, 0, τ0) = (0, 0, 0, 1), (τ0 = 1) and
(0, 0, τ1, τ0) ∩ (0, τ2, τ1, 0) = (0, 0, 1, 0), (τ1 = 1). Con-
sequently τ = 1 and τ = 2 - is the argument values the
autocorrelation function, where it can have a maximum
value.

This simple heuristic can be used to limit the number
of coordinates, searched to find the maximum values of
the autocorrelation function (Nagayama et al., 2005),
even though a relatively small part of the original truth
table. In practice, have BF, in which the size of cubes
C(f) grows exponentially. In these cases, the procedure
does not apply.

6. Numerical Results

In this section we provide simulation results on the
benchmarks with wide-AND/OR architectures. The
complexity of the logic blocks which are general PLAs
with several inputs (from about 20 to 100) connected
together by some kind of bus structure is high. The
performance of the suggested logic synthesis is exam-
ined in terms of the cost function and the execution
time. Table 3 refers to the benchmark function S420.

Tab. 3: FSM S420.

i N Lorig Llin % improvement (s)
1 24 66 49 25.8 7.8
2 24 49 32 34.7 7.4
3 24 32 15 53.1 7.3
4 26 32 32 reordering 8.1
18 69 151 151 reordering 23.9

The S420 represents a Finite State Machine (FSM)
that has 19 input variables, 16 state variables and two
output bits.

The FSM is defined by a set of 18 Boolean functions
d(i) of 35 variables. In the table: N is the number of
disjoint cubes in the representation of f(i) and Lorig
and Llin stand for the number of literals in SOP rep-
resentation of the original function and the linearized
function as computed by ESPRESSO [14].

Figure 6 shows the average execution time of the lin-
earization procedures of [8] and the proposed method
with w = 3 as a function of the number of imputs. The
execution time was measured in Intel-Corei3, 2.5 Ghz,
2 GB RAM. For the statistics we used random PLA’S
of four outputs and 50 products. The variance of the
measurements was less than 3 %. It is clear from Fig. 1
that linearization over disjoint cubes is more efficient

Fig. 6: The average execution time in seconds of Wiener-
Khinchin theorem (labeled as W-K) [8], and the pro-
posed spectral algorithm (labeled as SM) as a function
of the number of inputs of randomly generated PLAs (4
outputs and 50 products).

in terms of execution time than linearization based on
Wiener-Khinchin theorem (W-K).

Table 4 compares the average execution time of the
linearization procedure of [9] and the suggested method
(SM) (both with w = 3) for randomly generated PLAs
having 10 to 40 inputs, four outputs 50 products.

Tab. 4: Average execution-time in seconds for 4-outputs and
50-products PLAs.

Inputs [9] SM
10 2.64 0.33
15 7.69 0.69
20 21.87 1.55
25 56.38 3.59
30 151.42 8.37
35 339.95 16.97
40 738.03 31.62

One example of short realization for simulation re-
sults of the linear part with the selection method of
using Trachtenberg and Varma’s algorithm.

Tab. 5: The input file.

6 4
1 1 2 0 1 2
2 0 0 0 2 2
2 2 2 1 0 1
1 0 1 0 1 0

7. Conclusion and Future
Extension

This paper proposed a heuristic algorithm for the first
stage of decomposition of the BF, which uses treatment
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Tab. 6: The output file.

Formula
After the

mini-
mizing

Algorithm
Trachtenberg-

-Varma

Substi-
tutions

Time
execution Matrix

1112012 1112012 σ=
1200022 1200022 t=1 s. 1000100 x0 = x4
1222101 1222101 1000010 x1 = x4
1101010 1101010 1010000 x2 = x4

1000001 x3 = x0
1001000 x4 = x3
1100000 x5 = x5

Tab. 7: The transformed function.

Transformed function
The ternary

matrix Function

1011221 f1
1020202 x0 & x3 & x4 & ∼ x5 |
1102122 ∼ x1 & ∼ x3 & ∼ x5 |
1010011 x2 & ∼ x4 & x5 |

x0 & x1 & ∼ x2 & ∼ x3 & x4 & ∼ x5

of the Walsh spectrum of the original BF, linearization
technique Karpovsky, as well as general properties of
the autocorrelation functions. This algorithm involves
finding the maximum autocorrelation coefficient of BF
and to determine its address, i.e. serial number. Then,
this number appears in the binary system, and location
of units produced binary number determined by vari-
ables that are involved in its formation. Further search
is carried out only in the variables of which was formed
by the maximum rate. This greatly reduces the volume
of the entire procedures. Then, by typing the required
number of input variables, coefficients are deleted from
the table for further search; the algorithm terminates
the current step and starts a new one.

In future, the proposed technique is verified over
standard benchmark functions and randomly gener-
ated Boolean functions for different number of variables
and products. The experimental results will clearly
demonstrate more efficiency.
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