
CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

On Ladder Diagrams Compilation and Synthesis to
FPGA Implemented Reconfigurable Logic

Controller

Adam MILIK

Institute of Electronics, Silesian University of Technology, Akademicka 16, 44 100 Gliwice, Poland

adam.milik@polsl.pl

Abstract. The paper presents synthesis process of a
hardware implemented reconfigurable logic controller
from a ladder diagram according to IEC61131-3 re-
quirements. It is focused on the originally developed
a high-performance LD processing method. It is able to
process a set of diagrams restricted to logic operations
in a single clock cycle independently from the number
of processed rungs. The paper considers the compila-
tion of the ladder diagram into an intermediate form
suitable for logic synthesis process according to devel-
oped processing method. The enhanced data flow graph
(EDFG) has been developed for the intermediate repre-
sentation of an LD program. The original construction
of the EDFG with attributed edges has been described.
It allows for efficient representation and processing of
logic and arithmetic formulas. The set of compilation
algorithms that allow to preserve serial analysis order
and to obtain massively parallel processing unit are pre-
sented. The overview of a hardware mapping concludes
the presented considerations.

Keywords

DFG, FPGA, high-level synthesis, IEC61131-3,
LD, logic synthesis, PLC, reconfigurable hard-
ware.

1. Introduction

The Programmable Logic Controllers (PLC) have been
used since 1970s and first they were applied to relay
control systems. Within years of fast development of
electronic technology, the requirements given to PLC
become higher all the time (operating speed, handling
of analog objects, the increasing reliability, etc.). To-
day, the areas of PLC applications include small com-
plexity processes as well as large manufacturing lines.

The general concept of a PLC is based on the micro-
programmable circuits. It consists of two inseparable
parts that are a hardware platform and software. The
Hardware platform is able to execute given set of logic
and arithmetic instructions. A control algorithm is cre-
ated in the form of instructions sequence [1], [2], [8].

In contrast to software centric solutions, hardware
offers intrinsic parallel execution of the tasks. It radi-
cally reduces the response time and offers better perfor-
mance than software solutions. The implementation of
the control algorithm with the use of reprogrammable
and reconfigurable logic has been proposed by differ-
ent research groups [3], [4], [5], [9], [11], [13], [15], [16],
[19]. There have been proposed a custom FPGA archi-
tecture for direct mapping of the LD logic [17]. The
significant limitation in wide use of reprogrammable
digital circuits is a high design complexity of the imple-
mentation processes (in comparison to the instruction
based standard approach).

A set of tools for creating a reconfigurable controller
and its direct programming with well defined and com-
monly used ladder diagram has been developed. Pre-
sented work concentrates on transforming of control
algorithm designed with the use of the ladder diagram
into a form suitable for the entire process of hardware
implementation incorporating: optimization, schedul-
ing and hardware mapping. There has been consid-
ered details of the LD program execution according to
IEC61131-3 requirements.

An intermediate form of the control program has
been developed according to considered standard re-
quirements. Algorithms, presented in this paper, are
a part of the developed concept of reconfigurable logic
controllers families and toolset for their programming
according to the IEC61131-3 reference manual.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 443

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

2. The LD Execution Model

The LD network is widely used method for describing
control algorithms [1]. This method has been inherited
from relay control systems. Contacts and coils repre-
sent logic dependencies between signals and function
blocks. According to IEC61131-3 requirements a net-
work is analyzed in a row based fashion that evaluates
power flow through components rung by rung. In con-
trast to the electrical schematic diagram the power flow
is unidirectional. The power is transmitted from the
left rail to the right. There are implied limitations that
prohibit of reverse power flow in ladder schematic [8].
Sequential analysis of schematic produces an ordered
sequence of instructions for a PLC (Fig. 1). A switch
is transformed into a logic AND operation. This oper-
ation is performed between current result coming from
the predeceasing node and a signal that controls the
switch. A junction merges power flow coming from
several rungs. In some cases, there is a need for creat-
ing variables that enables storage of partial results for
nested operations.

Fig. 1: The ladder diagram and its equivalent instruction se-
quence.

The LD network processing speed can be increased
by parallel execution of the logic operation in pro-
grammable hardware. Transforming logic dependen-
cies into combinatorial logic allows increasing perfor-
mance several orders of magnitude. It is required to
develop a universal method suitable for representing
not only LD programs, but other programming meth-
ods specified by IEC61131. This method should be able
to synthesize logic operation, but also other operations
performed by PLCs (e.g. timers, counters, arithmetic
operations).

2.1. Existing Synthesis Models for
LD

An LD diagram is described by two sets of Boolean
variables I and Q. The set I consists of variables asso-
ciated with inputs while the set Q consists of variables
associated with outputs and internal markers. The
logic functions are defined by rungs and create an or-
dered sequence of Boolean expressions:

qi = fi(I,Q), i = 1...r, (1)

where i is the rung index. Equation (1) defines the
ordered sequence of processing according to the index
i. This feature has been utilized in implementations
proposed by [9], [10], [16].

An exemplary LD network and its implementation
have been presented in the figure (Fig. 2). In this
model each rung is processed in individual cycle. The
controller response time is proportional to the num-
ber of rungs in a program. In comparison to the pro-
grammatic approach, this model reduces a computa-
tion time of logic functions. It can be noticed that
calculations of some variables can be processed in par-
allel. Distributing calculation process for each rung (q
variable) introduces redundant cycles. In considered
diagram (Fig. 2) variables q1 and q3 do not depend on
other q variables. The q1 variable and the q3 can be
evaluated in the first cycle (t1).

Fig. 2: The LD network (A) and its equivalent (B).

In order to reduce the number of calculation cycles
dependencies between qi variables have to be deter-
mined. In the paper [6] authors introduced an idea of
using dependencies and simultaneities graphs for creat-
ing a sequential functional chart (SFC) from given LD.
This idea has been employed in [3] for creating opti-
mized hardware description. Similar idea has been em-
ployed in [15] for control algorithm partitioning. Dur-
ing the analysis of the LD, a dependencies graph is
created. This is a directed graph that consists of nodes
representing all qi variables. The node vi (representing
variable qi) is connected by directed edge with node vj
only if function fi depends on variable qj and i > j:

(vj , vi)↔ fi(qi) 6= const. (2)

The number of elementary cycles based on depen-
dencies analysis is equal to:

T = pmax + 1, (3)

where pmax is the longest path in the dependencies
graph.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 444

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

2.2. The LD High-Performance
Synthesis Model

Presented dependency analysis of the ladder diagram
is directly derived from sequential execution model.
There are considered rungs as independent units de-
livering variables value. The early approaches consider
each rung to be dependant of predeceasing rungs. The
execution is performed in serial fashion a rung by a
cycle. Applying rung dependencies analysis allows to
determine the calculation dependencies in the form of
the graph which is used for improved rungs scheduling.

The LD can be considered as a sequence of opera-
tions. Let assume that variables associated with inputs
are updated before the start of the calculation process
and remain constant during it. Let introduce the set
of variables D that are assigned with a value of pro-
cessed expressions. Value of the variable di is assigned
to variable qi at the end of calculation cycle (qi = di).
This approach allows to distinguish between two values
that are calculated in the present cycle (di) and in the
previous cycle (qi). Equation (1) for mth rung can be
rewritten in following form:

dm = fm(I, d0, ..., dm−1, qm, ..., qn), (4)

qm = dm. (5)

Using proposed substitution of q variables allows to
propagate calculation results through all functions by-
passing registers (Fig. 3). The current value of control
process is updated by single clock pulse after calcu-
lating all di values. In presented form the calculation
process is fully parallel and completes in a single cycle
that transfers values from d to respective q variables.

Fig. 3: The LD network (A) and its hardware equivalent ob-
tained with proposed synthesis method (B).

3. Intermediate
Representation with the
Use of Data Flow Graphs

It is required to develop appropriate representation for
an intermediate form of control algorithm that is suit-
able for high-level synthesis process. The intermedi-
ate form should be able to represent logic and arith-
metic operations performed by PLCs maintaining op-
eration sequence and reviling its dependencies. Com-
monly used form of intermediate representations for
logic synthesis and compilers are data flow graphs [7].
A node of the graph represents elementary operation
while directed edges indicate processing flow between
nodes.

3.1. The EDFG Concept

For the purpose of recording PLC programs, the au-
thor has developed a form of enhanced data flow graph
(EDFG). This has been inspired by concept of at-
tributed edges used in BDD introduced by Minato [14].
In a similar way the EDFG handle unary operations
like logic inversion and arithmetic complement. The
other implemented extension is a multiple argument
node for commutative operations. Presented modifica-
tions allow for efficient creating of data flow graph and
reduces algorithmic complexity.

The Extended Data Flow Graph is given by G =
〈V,E〉 where V is a set of nodes representing elemen-
tary operations and E is a set of directed edges with
attributes. The directed edge e ∈ E is described by
triple e = 〈vS , vD, a〉 where vS is a predeceasing node
and vD is a successor node of the directed edge. The a
is an attribute of the selected from the set A of allowed
attributes.

Fig. 4: Comparison of the general DFG (1) with EDFG (2).

An equivalent DFG to the Boolean formula y =

a · b̄ · c + d · ē is presented in the figure (Fig. 4). There
have been considered two cases: a standard approach
DFG (1) and with the use of the EDFG (2). The DFG
(1) implements logic inversion by separate NOT nodes.
Introducing attributed edges with logic inversion elim-
inates a NOT node EDFG (2). The attributed edge

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 445

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

not only reduces the number of nodes in the diagram,
but also allow to simplify logic operation handling.

Figure 5 shows the graph transformations for logic
nodes. One of the common operation after compilation
process is operation merge. Using EDFG simplifies the
algorithms of node merging. Predeceasing node can be
merged if it is connected with simple edge and both
nodes implement the same logic operation. (shown in
Fig. 5.1.). The reference node is marked with gray
color. The operation is performed by modifying graph
edges. There is exchanged vD that equals v1 to v2. The
merge rule can be extended with the use of de Mor-
gan’s laws. In the case (Fig. 5.2.) the predeceasing
node is connected with inverted edge and implements
opposite logic function (AND↔OR) to the reference
node. The operation is performed by exchanging the
vD that equals v2 to v4 and the edge attribute is in-
verted. Finally, the v2 node is removed The final EDFG
is presented in Fig. 5.3.

Fig. 5: Implementation of node merge (1) and de Morgan’s laws
(2) in DFG with attributed edges.

Thanks to attributed edges similar flexibility is
achieved for arithmetic operations. In the domain of
arithmetic operations, the subtraction node is replaced
by an edge with complement value attribute. It reduces
the set of arithmetic operations to: addition, multipli-
cation and division. The figure (Fig. 6) shows the im-
plementation of the expression: y = a+b−c+d−e and
compares the use of attributed edges for arithmetic op-
erations. Using a standard approach with separate ad-
dition and subtraction nodes is shown in Fig. 6.A. Sim-
ilar result is achieved using attributed edges (Fig. 6.B).
The attributed edges simplify algorithms of operation
merge and constant propagation as shown in Fig. 6.C.

Fig. 6: Comparison of the general DFG (A) and the EDFG
(B, C).

4. Converting LD to EDFG

The compilation process delivers basic items of a lan-
guage [18]. Subsequent algorithms show systematic
methods of translating those items into an EDFG suit-
able for hardware mapping.

4.1. Variables

The variables are declared at the beginning of a net-
work according to IEC61131-3 requirements. For the
purpose of the synthesis process the variables set is di-
vided into three subsets. The variable classification is
based on the signal association to input, output and in-
ternal marker areas. The variable reduction procedure
takes into consideration variables membership. Vari-
ables associated with input signals are allowed to be
read while value assignment is implied and made from
input signals. Variables associated with outputs and
markers are allowed for read and write access. The
variables associated with markers can be eliminated
when only write access is detected. There are two
possible cases. The first one when a variable is used
as a temporary storage for distributing the value and
the other one when a variable is unused. The unused
variable is distinguished as the only sink for the driv-
ing node. Variables associated with output signals and
markers are not allowed to be read without value as-
signment. The moment of assignment is independent
of the read access but must be completed at least once
in entire calculation cycle.

The variable value access implementation assures se-
quential variable access according to LD description.
In order to satisfy this requirement, a variable current
value is accessed by following algorithm.

Algorithm 1: Let the x is a variable that the value
is going to be read by node v, vxWR is an assignment
node to the x variable, vxDRV is the node delivering
value to the variable x. The variable x refers to EDFG
nodes through the table pointing read and write nodes
(Fig. 7). The vDRV (if exists) is connected with a di-
rected edge with vxWR. The vxRD is a value reading
node of the x variable. Following two cases are pos-
sible depending on the value assignment sequence. If
the variable x value is not assigned than the vxWR node
does not exist. The value of the x variable is read by
creating the vxRD node (this notifies that the value is
coming from the previous cycle – e.g. forward coil ref-
erence). The vxRD node becomes the argument of the
v node (Fig. 7.1). If the variable x is assigned the vxWR

node exists. The directed edge connects it with driving
node vDRV . The vDRV is used for driving the v node
(Fig. 7.2). The attribute of the edge is inherited. It
should be noticed that this mechanism follows recently
assigned value to the x variable.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 446

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

Fig. 7: The variable value access algorithm.

4.2. Nodes

The ladder diagram node merges power flow coming
from multiple sources. It should deliver a logic sum
of all connected signals. A general algorithm that ac-
cepts multiple drivers for a node is used. Process starts
from the variable declaration. The variable name is in-
herited from network node name (automatically gener-
ated). It is included into a subset of internal signals.

Algorithm 2: Let the x is a variable associated with a
schematic node (junction), vxWR is the x variable value
assignment node, vC is the graph node that is going
to drive the x variable, vP is the node that currently
drives the x variable. There are two possible cases. If
the x variable is not assigned than the vxWR node does
not exist. The vC node is connected with newly cre-
ated vxWR node (Fig. 8.1). If the x variable is already
assigned then the vxWR node exists. In this situation,
the vOR node is created. Nodes vP and vC are con-
nected to vOR node. The vOR node becomes the only
driver of vxWR (Fig. 8.2). The described algorithm can
be repeated iteratively for nodes with multiple driving
sources.

Fig. 8: The iterative conversion of the LD node into equivalent
EDFG.

4.3. Switches

A switch is a basic component used for creating the
logic AND operation between driving and input sig-
nals. The switch is converted into EDFG equivalent
that has been shown in the Fig. 9. The EDFG pro-
cedure utilizes two previously described algorithms for
variable access and node driving.

Algorithm 3: Let the x is a variable associated with
an input node, a is a variable driving the switch and
y is a variable associated with the output node. The
vAND node is created for considered switch. The value
of the x and a variables are accessed with the use of the
algorithm 1. The procedure returns respective driving

nodes that are connected to the vAND node. The at-
tribute of the edge for variable a is set to a logic inver-
sion for normally closed switch (Fig. 9.2). The vAND

node assigns value to the y variable. The assignment
is performed according to the algorithm 2.

Fig. 9: The EDFG switch equivalent.

4.4. Coils

The coil assigns or reassigns value to a particular vari-
able. Following algorithm is used for obtaining EDFG
from a coil item. This algorithm is adopted to cooper-
ate with remaining compilation algorithms, especially
with variable value access.

Algorithm 4: Let the a is a driving signal, y is the
variable associated with a signal driven by the coil.
The variable value is read according to the algorithm 1
that returns driving node vaD. Returned vaD node is
assigned to the variable y. If a value assignment node
vyWR does not exist it is created and linked with vaD
(Fig. 10.1). If the variable y is already assigned than
the directed edge is reconnected to the recent driving
node (Fig. 10.2). The edge attribute is set according
to the coil type (e.g. inverted coil - Fig. 10.3).

Fig. 10: The coil compilation scheme.

4.5. Functional Modules

The complex arithmetic or mixed arithmetic-logic
functionality of the controller is implemented with the
use of functional blocks. In the form of blocks are im-
plemented timers, counters and arithmetic functions
[1], [8]. Those blocks are controlled by logic and arith-
metic signals. All logic signals are connected into lad-
der network while numeric variables are referenced by
identifiers (names).

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 447

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

All these blocks perform conditional execution con-
trolled by input logic signals. This implies the condi-
tional execution of arithmetic operations. The EDFG
requires introduction of the conditional selection node
that implement selection and assures parallel operation
execution). The conditional selection node shown in
Fig. 11.1 reflects the high-level synthesis concept based
on EDFG. It enables selection between arguments of
same data type and can be used for flow control in
logic and arithmetic paths. The optimization process
can be separately applied to the data paths and con-
trol (selection input) path. The additional optimiza-
tion rules are defined for selection nodes. This is im-
portant for optimization performed in arithmetic op-
erations paths. When considered for logic paths the
conditional node is transformed into multiplexer equa-
tion formed from logic nodes. This operation creates
consistent logic EDFG that further can be optimized.

Fig. 11: The EDFG conditional selectin node (1) and general
implementation EDFGimplementation of arithmetic
blocks (2).

The exemplary general arithmetic module is shown
in Fig. 11.2. This block performs calculations condi-
tionally depending on the enable (en) signal. An arith-
metic block is combined into EDFG between source
and sink nodes. Conditional execution of the block
forces an automatic variable implementation. It is
achieved by executing algorithm 1 for the output vari-
able before calling assignment algorithm 4 This vari-
able is responsible for driving output when block is
disabled (en = 0). The optimization procedures of se-
lection nodes allow for eliminating covered by logic con-
dition intermediate nodes. At the block level there are
used two different value assignment procedures. For
logic variables, the algorithm 2 is used while for nu-
meric variables the algorithm 4 described for coils is
used.

The figure (Fig. 12) shows an EDFG implementation
of TON timer. This block is delivered in the form of
sub EDFG that is incorporated into final EDFG during
the compilation process. The timer is a specific imple-
mentation of a counter. It declares a hidden clocking
signal t that is triggered with time base period. This
signal enables counting of the timer unit. It is driven
from the controller framework created during the im-
plementation phase. Similarly to the arithmetic mod-
ules, there are declared internal variables responsible
for storing elapsed time (et) and timer activity (q).

Fig. 12: The timer ton equivalent sub EDFG.

5. The EDFG Hardware
Mapping

A synthesizable HDL model optimized for an FPGA
target is obtained from described EDFG structure.
The mapping procedure for an EDFG starts from the
optimization process. The EDFG allows for limited
optimization of the logic operations as presented in
chapter 3. After initial operation merge and logic ab-
sorption, the Espresso minimization is used. This al-
lows for further reduction of the logic operations and
optimization of unused paths. In the domain of the
arithmetic operation, a constant merge and common
subexpression extraction are performed. Finally, mul-
tiple argument arithmetic nodes are expanded into a
two argument nodes that can be directly mapped into
arithmetic modules (adders and multipliers). The ex-
pansion process balances the propagation delay of op-
erations in EDFG paths [12].

Fig. 13: The EDFG scheduling and mapping process.

The optimized EDFG is a subject of scheduling. It
can be directly implemented with the use of greedy
approaches with ALAP or ASAP scheduling methods
[7]. In contrast to logic operations, arithmetic oper-
ations resource requirements are much higher. The
greedy mapping approach will lead to quick resources
run out. To overcome this limitation, a scheduling
method based on list approach with original opera-
tion sorting is applied. The operation schedule takes
into consideration the operation mobility and local de-
pendencies. Scheduled nodes are mapped into a set
of arithmetic resources. After operation schedule, the

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 448

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

register allocation is made with the use of modified left
edge algorithm. Schematically EDFG hardware map-
ping process is shown in (Fig. 13). There is shown a
schedule result in the form of an EDFG (Fig. 13.1). On
the graph are marked: operation start time (c) oper-
ation end time (t0) and last access time to the result
(t1). Obtained mapping reflects the hardware struc-
ture shown in Fig. 13.2.

The mapping procedure optimizes the resource dis-
tribution by minimizing the cost of argument multi-
plexing. Structure of the controller and principles of
its operation are shown schematically in Fig. 14. The
specific EDFG depicts the allocated registers (small
circles) and operations (large circles). The thick line
connecting small circles denotes the variable lifetime.
There are three computation stages. The calculation
process starts from image registers update and internal
variables exchange. After this operation, a calculation
process takes place. The cycle is ended with a result
write back.

Fig. 14: The calculation cycle and its EDFG representation
with marked variable lifetime.

The proposed method of implementation has been
compared with direct EDFG mapping approach. The
result are presented in Tab. 1. There has been selected
3 representative FPGA families that are Spartan II,
Spartan 3 and Spartan 6. The Spartan II and the
Spartan 3 are equipped with 4 input LUTs while the
Spartan 3 is additionally equipped with combinatorial
18x18 multipliers. The Spartan 6 family is equipped
with 6 input LUTs and DSP48A1 units. For illustrat-
ing implementation, two representative projects for au-
tomatic control have been chosen. The C2 project im-
plements double PID controller with low pass filtering
and hysteresis trigger. The T8 project implements the
cascade of 8 timers controlling time dependant process.
The optimization process can influence the controller
response time by extending calculation time due to re-
source sharing. In the case of the C2 project there was
used method of resource sharing that prohibits perfor-
mance loss. This approach presents a non-redundant
greedy assignment accommodated to FPGA architec-
ture sharing. In general, the controller area has been
reduced between 50 % - 60 % of the initial area. There
can be observed a strong reduction of multipliers usage
(50 %).

Tab. 1: The FPGA resource usage comparison.

FPGA Proj. Direct Opt Gain
[LUT/MUL] [%]

Spartan II
(LUT4)

C2 1021/- 612/- 59.9 %
T8 341/- 93/- 27.2 %

Spartan 3
(LUT4 + MUL)

C2 1252/4 717/2 57.2 %
T8 341/- 93/- 27.2 %

Spartan 6
(LUT6 + DSP)

C2 1274/4 598/2 46.9 %
T8 205/- 95/- 46.3 %

The T8 projects demonstrate the idea of resource
sharing with an acceptable increase of response time.
In the case of timers, the flat structure response time
is 2 cycles. For this structure, the algorithm takes
benefits form use of distributed RAMs that allows to
reduce resource requirements about 3.67 times on ex-
pense of response time increase. This method is ap-
plicable when controller performs other calculation or
performance reduction is acceptable.

6. Conclusion

The paper presents entire synthesis process of hard-
ware implemented reconfigurable logic controller from
a ladder diagram to hardware mapping. The paper is
focused on the compilation of the ladder diagram into
an intermediate form suitable for logic synthesis pro-
cess. As it was presented, chosen intermediate form
and methods of creating it has extremely high impact
on the final result of the synthesis. The author has de-
veloped a method of intermediate representation based
on the enhanced data flow graph that utilize attributed
edges. It significantly simplifies the graph construc-
tion and processing. The intermediate form is created
from the ladder diagram with the use of presented al-
gorithms. Due to limited space only general overview
of the LD compilation has been described. There are
also developed method of representing arithmetic op-
erations and complex functional blocks like timers and
counters.

The graph representation is well suited for further
processing oriented to FPGA implementation. Finally,
a brief overview of mapping and implementation of
synthesizable HDL description was given. Developed
optimization methods allow to reduce controller size
between 1.66 – 2.13 times without performance loss.
Significant reduction of the controller size (about 3.6
times) is observed for implementation where specific
features of FPGAs are used and little performance loss
is acceptable.

Presented algorithms belong to originally developed
a hardware PLC synthesis tool capable of synthesiz-
ing custom hardware implementation from LD, IL and
SFC [11], [12]. The compilation and synthesis tool is
subject of ongoing research and development. It is

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 449

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

planned to extend arithmetic support to floating point
numbers and improving scheduling and mapping pro-
cesses.

References

[1] BOLTON, W. Programmable Logic Controllers.
Burlington: Elsevier Newnes, 2009. ISBN 978-0-
7506-8112-4.

[2] CHMIEL, M. and E. HRYNKIEWICZ. Concur-
rent operation of processors in the bit-byte CPU
of a PLC. Control and Cybernetics. 2010, vol. 39,
no. 2, pp. 559–579. ISSN 0324-8569.

[3] DAOSHAN, D., X. XIAODONG and K. YA-
MAZAKI. A study on the generation of silicon-
based hardware PLC by means of the direct con-
version of the ladder diagram to circuit design lan-
guage. International Journal of Advanced Manu-
facturing Technology. 2010, vol. 49, no. 5, pp. 615–
626. ISSN 1433-3015.

[4] ECONOMAKOS, C. and G. ECONOMAKOS.
FPGA implementation of PLC programs using
automated high-level synthesis tools. In: IEEE
International Symposium on Industrial Electron-
ics. Cambridge: IEEE, 2008, pp. 1908–1913.
ISBN 978-1-4244-1665-3.

[5] ECONOMAKOS, C. and G. ECONOMAKOS. C-
based PLC to FPGA translation and implementa-
tion: The effects of coding styles. In: 16th Inter-
national Conference on System Theory, Control
and Computing (ICSTCC). Sinaia: IEEE, 2012,
pp. 1–6. ISBN 978-1-4673-4534-7.

[6] FALCIONE, A. and B. H. KROGH. Design Re-
covery for Relay Ladder Logic. IEEE Control Sys-
tems. 1993, vol. 13, iss. 2, pp. 90–98. ISSN 1066-
033X.

[7] GAJSKI, D., N. DUTT, A. WU and S. LIN. High-
Level Synthesis - Introduction to Chip and System
Design. New York: Kluwer Academic Publishers,
1992. ISBN 978-1-4613-6617-1.

[8] JOHN, K. H. and M. TIEGELKAMP. IEC
61131–3: Programming Industrial Automation
Systems: Concepts And Programming Languages,
Requirements for Programming Systems, AIDS to
Decision-making Tools. Berlin: Springer Science
& Business Media, 2001. ISBN 978-3540677529.

[9] ICHIKAWA, S., M. AKINAKA, R. KIEDA
and H. YAMAMOTO. Converting PLC in-
struction sequence into logic circuit: A pre-
liminary study. In: IEEE International Sym-
posium on Industrial Electronics. Montreal:

IEEE, 2006, pp. 2930–2935. ISBN 1-4244-0497-5.
DOI: 10.1109/ISIE.2006.296082.

[10] LIU, Y., K. YAMAZAKI, M. FUJISIMA and
M. MORI. Model-driven programmable logic con-
troller design and FPGA-based hardware imple-
mentation. In: ASME 2005 International Design
Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference.
Long Beach: ASME, 2005, pp. 81–88. ISBN 0-
7918-3766-1. DOI: 10.1115/DETC2005-85119.

[11] MILIK, A. and E. HRYNKIEWICZ. Synthesis
and implementation of reconfigurable PLC. Inter-
national Journal of Electronics and Telecommuni-
cations. 2012, vol. 58, no. 1, pp. 85–94. ISSN 2300-
1933.

[12] MILIK, A. On Mapping of DSP48 Units for
Arithmetic Operation in Reconfigurable Logic
Controllers. Programmable Devices and Embed-
ded Systems. 2012, vol. 11, no. 1, pp. 249–254.
ISSN 1474-6670. DOI: 10.3182/20120523-3-CZ-
3015.00048.

[13] MILIK, A. On Mapping of DSP48 Units for
Arithmetic Operation in Reconfigurable Logic
Controllers. Programmable Devices and Embedded
Systems. 2006, vol. 6, no. 1, pp. 14–16. ISSN 1474-
6670.

[14] MINATO, S. Binary Decision Diagrams and Ap-
plications for VLSI CAD. Berlin: Springer, 1996.
ISBN 978-1-4613-1303-8.

[15] MOCHA, J. and D. KANIA. Hardware Implemen-
tation of a control program in FPGA structures.
Electrical Review. 2012, vol. 88, iss. 12, pp. 95–
100. ISSN 0013-4384.

[16] WELCH, J. T. Translating Relay Ladder Logic
for CCM Solving. IEEE Transactions on Robotics
and Automation. 1997, vol. 13, iss. 1, pp. 148–153.
ISSN 1042-296X. DOI: 10.1109/70.554356.

[17] WELCH, J. T. and J. CARLETTA. A di-
rect mapping FPGA architecture for indus-
trial process control applications. In: Interna-
tional Conference on Computer Design. Austin:
IEEE, 2000, pp. 595–598. ISBN 0-7695-0801-4.
DOI: 10.1109/ICCD.2000.878352.

[18] WIRTH, N. Algorithms + Data Structures =
Programs. New Jersey: Prentice Hall, 1976.
ISBN 978-0130224187.

[19] ZIEBINSKI, A., R. CUPEK and W. SROKA. Ap-
plication in Java language realizing the function
parser of pseudocode describing structure of a spe-
cialized coprocessor of PLC in VHDL. Measure-
ment Automation and Monitoring. 2011, vol. 57,
no. 8, pp. 148–153. ISSN 0032-4140.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 450

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

About Authors

Adam MILIK received M.Sc. and Ph.D. degrees
from Silesian University of Technology of Gliwice
in 1997 and 2003 respectively. Since 2003 he is a
professor assistant at Silesian University of Technology

of Gliwice. His main interests and research areas
are: high-level logic synthesis and implementation,
algorithm implementation, technology mapping in
FPGA devices, the hardware high-level modeling
systems based on HDLs and its integration with other
tools like MATLAB, Simulink or SystemVue.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 451

	Introduction
	The LD Execution Model
	Existing Synthesis Models for LD
	The LD High-Performance Synthesis Model

	Intermediate Representation with the Use of Data Flow Graphs
	The EDFG Concept

	Converting LD to EDFG
	Variables
	Nodes
	Switches
	Coils
	Functional Modules

	The EDFG Hardware Mapping
	Conclusion

