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Abstract. In this paper, evolutionary technique Dif-
ferential Evolution (DE) is used for the evolutionary
tuning of controller parameters for the stabilization
of selected discrete chaotic system, which is the two-
dimensional Lozi map. The novelty of the approach is
that the selected controlled discrete dissipative chaotic
system is used within Chaos enhanced heuristic con-
cept as the chaotic pseudo-random number generator
to drive the mutation and crossover process in the DE.
The idea was to utilize the hidden chaotic dynamics
in pseudo-random sequences given by chaotic map to
help Differential evolution algorithm in searching for
the best controller settings for the same chaotic system.
The optimizations were performed for three different
required final behavior of the chaotic system, and two
types of developed cost function. To confirm the robust-
ness of presented approach, comparisons with canonical
DFE strategy and PSO algorithm have been performed.
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1. Introduction

In many applications, one of the most challenging tasks
is the controlling of highly nonlinear dynamical systems
in order to either eliminate or synchronize the chaos.
The first successful approach to control chaotic dynam-
ics by means of a simple linearization technique was
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introduced in the 1990s by Ott, Grebogy and Yorke
(i.e. OGY method) [I]. Later, rapid development of
methods for stabilizing chaotic dynamics has arisen,
and more advanced modern techniques have been ap-
plied for chaos control and synchronization including
unconventional methods from the soft computing field.

The most current intelligent methods are mostly
based on soft computing, which is a discipline tightly
bound to computers, representing a set of methods
including special algorithms, belonging to the artifi-
cial intelligence paradigm. The most popular of these
methods are neural networks, Evolutionary Algorithms
(EA’s) and fuzzy logic. Currently, EA’s are known as a
powerful set of tools for almost any difficult and com-
plex optimization problem.

The interest about the connection between evolu-
tionary techniques and (not only) control of chaotic
systems is rapidly spreading. The initial research was
conducted in [2], whereas [3] and [4] was more con-
cerned with the tuning of parameters inside the exist-
ing chaos control technique based on the Pyragas Ex-
tended Delay Feedback Control (ETDAS), [5]. Later
works [6], [7], and [§] introduce a novel approach of
generating the entire control law (control method) for
the purpose of stabilization of any chaotic system.

Other approaches utilizing the EA’s for the stabiliz-
ing of chaotic dynamics have mostly applied the Par-
ticle Swarm Optimization algorithm (PSO), [9], and
multi-interval gradient-method [I0] or minimum en-
tropy control technique [IT]. EA’s have been also fre-
quently used in the task of synchronization of chaos
[12], [13] and [I4]. In [I5] an EA for optimizing lo-
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cal control of chaos based on a Lyapunov approach is
presented. Another example of the connection between
deterministic chaos and EA’s represents the embedding
of chaotic dynamics into the EA’s. Recent research has
proven that chaotic approach is able to bypass local op-
tima stagnation. A chaotic approach uses any chaotic
system in the place of a pseudo-random number gen-
erator [I6]. This causes the heuristic to map unique
regions since the chaotic map iterates to new regions
due to the basic property of deterministic chaos, which
is the density of periodic orbit.

The initial concept of embedding chaotic dynamics
into EA’s is given in [I7]. Later, the initial study
|18] was focused on the simple embedding of chaotic
systems in the form of Chaos Pseudo-Random Num-
ber Generator (CPRNG) for Differential Evolution
(DE), [19], and Self Organizing Migrating Algorithm
(SOMA), [20], in the task of optimal PID tuning. Also,
the PSO algorithm with elements of chaos was intro-
duced as the CPSO [21]. This field of research was later
extended with the successful experiments with chaos
driven DE [22] in real domain as well as in combinato-
rial problems domain [23] and [24].

At the same time, the chaos embedded PSO with in-
ertia weight strategy was closely investigated [25], fol-
lowed by the introduction chaotic firefly algorithm [26].
The organization of this paper is as follows: firstly, used
evolutionary technique, which is DE, is described, and
followed by the description of the ChaosDE concept.
Thereafter, the problem design and appropriate corre-
sponding cost functions are investigated and proposed.
Results and conclusion follow afterward.

2. Motivation

This paper extends the research of evolutionary chaos
control optimization by means of ChaosDE algorithm
[27]. In this paper the DE/rand/1/bin strategy driven
by different chaotic map (system) was utilized to solve
the issue of evolutionary optimization of chaos control
for the same chaotic system used as a CPRNG in the
particular case study. Thus, the idea was to utilize the
hidden chaotic dynamics in pseudo-random sequences
given by chaotic map to help Differential evolution al-
gorithm in searching the best controller settings for the
very same chaotic system. Since the positive contribu-
tion of the chaotic dynamics to the performance of DE
in the task of evolutionary chaos control optimization
was proven in comparison with original canonical DE
within the initial study [28], this paper is not primar-
ily focused on the performance comparisons with the
different heuristic.

This research extends the initial work with the afore-
mentioned idea and with the several case studies com-
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bining different required states of the system (i.e. dif-
ferent Unstable Periodic Orbits - UPOs) and different
utilized cost functions.

Used Heuristic - Differential
Evolution

3.

DE is a simple and powerful population-based opti-
mization method that works either on real-number-
coded individuals or with small modifications on dis-
crete type individuals [I9], [29] and [30]. DE is quite ro-
bust, fast, and effective, with global optimization abil-
ity. This global optimization ability has been proven in
many interdisciplinary types of research. It works well
even with noisy and time-dependent objective func-
tions. Recently hybridized DE strategies have been
developed [31], [32] and also self-adaptive DE variants
[33], [34] and [35] have proven to be powerful heuristics.
Basic canonical principle is following.

For each individual z; ¢ in the current generation
G, DE generates a new trial individual x? ¢ by adding
the weighted difference between two randomly selected
individuals x,7¢ and z,2¢ to a randomly selected
third individual x,35.¢. The resulting individual x;_‘G
is crossed-over with the original individual x;¢. The
fitness of the resulting individual, referred to as a per-
turbed vector w; g1, is then compared with the fit-
ness of u; . If the fitness of u;G41 is greater than
the fitness of z; ¢, then z; ¢ is replaced with u; G41;
otherwise, x; ¢ remains in the population as x; G41.

Please refer to Eq. for notation of crossover, and
to [19] for the detailed description of used DERand1Bin
strategy and all other DE strategies:

(1)

uiTG = ITT,G +F (IT‘E,G - :Crg,G) .

4. Concept of ChaosDE

This section contains the description of discrete dissi-
pative chaotic map, which can be used as the chaotic
pseudo-random generators for DE as well as the main
principle of the ChaosDE concept. In this research, di-
rect output iterations of the chaotic map were used for
the generation of pseudo random numbers. Two types
of numbers are required: real numbers in the process
of crossover based on the user defined CR value and
integer values used for selection of individuals.

The general idea of ChaosDE and CPRNG is to re-
place the default PRNG with the discrete chaotic map.
Since the discrete chaotic map is a set of equations
with a static start position, a random start position
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of the map is created in each run of EA, in order to
have different start position for different experiments
(runs of EA’s). This random position is initialized with
the default PRNG, as a one-off randomizer. Thus,
the concept of ChaosDE is utilizing the famous and
well-known “butterfly effect” i.e. extreme sensitivity of
chaotic system to the initial conditions.

As two different types of numbers are required in
ChaosDE; real and integers, the use of modulo oper-
ators is used to obtain values between the specified
ranges, as given in the following Eq. and Eq. :

2)
rndint = mod (abs (rndChaos) ,1.0) X Range+1, (3)

rndreal = mod (abs (rndChaos) ,1.0) ,

where abs refers to the absolute portion of the chaotic
map generated number rndChaos, and mod is the
modulo operator. Range specifies the value (inclusive),
where the number is to be scaled.

5. Lozi Map

This section contains the mathematical and graphical
description of the selected discrete dissipative system,
which serves both as for CPRNG and also as the ex-
ample of the system to be evolutionary controlled.

The Lozi map is a simple discrete two-dimensional
chaotic map. The map equations are given in Eq. @D
The parameters used in this work are a = 1.7 and
b = 0.5 as suggested in [36]. For these values, the
system exhibits typical chaotic behavior and with this
parameter setting it is used in the most research papers
and other literature sources [37]:

Xpy1=1—alX,|+b-Y,

Yn+1 == Xn (4>

The z, y plot of the selected map is depicted in Fig.
The chaotic behavior of the chaotic map, represented
by the example of direct output iterations is depicted
in Fig. 2] whereas the Fig. [3] shows the example of
chaotic dynamics transferred into the range (0,—1).
Finally, the illustrative histogram of the distribution
of real numbers transferred into the range (0, —1) gen-
erated by means of chaotic Lozi map is shown in Fig. [

6. Cost Function Design

The idea of the basic cost function (C'Fgjmpie), Which
could be used problem-free only for the stabilization of
p—1 orbit, was to minimize the area created by the dif-
ference between the required state and the real system
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Fig. 1: x,y plot of the Lozi map.
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Fig. 2: Iterations of the uncontrolled Lozi map (variable x).
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Fig. 3: Example of the chaotic dynamics: range (0, —1) gener-
ated by means of the Lozi map.

output in the whole simulation interval —7; Eq. .
This C'F design is very convenient for the evolutionary
searching process due to the relatively favorable C'F
surface. The disadvantage of the approach is that C'F
value is influenced by chaotic transient behavior of the
non-stabilized system. As a result of this, the small
change in control method setting for extremely sensi-
tive chaotic system (given by the very small change of
C'F value), can be suppressed by the above-mentioned
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Fig. 4: Histogram of the distribution of real numbers trans-
ferred into the range (0, —1) generated by the Lozi map
(5000 samples).

including of initial chaotic transient:

CFSimple = Z |TSt - Ast‘ ) (5)
t=0

where T'S is target state and AS is actual state.

Different type of universal cost function is purely
based on searching for the desired stabilized periodic
orbit and thereafter calculation of the difference be-
tween desired and actual periodic orbit in the short
time interval —7 (20 iterations) from the point, where
the first minimal value of difference between desired
and actual system output is found (i.e. floating win-
dow for minimization, Fig. .
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Fig. 5: Floating window for the optimization.

Such a design of universal CF should secure the suc-
cessful stabilization of either p—1 orbit (stable state) or
any higher periodic orbit anywise phase shifted. Fur-
thermore, due to CF values converging towards zero,
this C'F also allows using decision rules and avoiding
very time demanding simulations. This rule stops EA
immediately, when the first individual with good pa-
rameter structure is reached, since the value of C'F
is lower than the acceptable one (CF,..). Based on
the numerous experiments, typically CF,.. = 0.001 at
time interval 74 = 20 iterations, thus the difference be-
tween desired and actual output has the value of 0.0005
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per iteration — i.e. successful stabilization for the used
control technique. The CFUNI has the form described

in Eq. @:

CFyny =peny+ Y _ |T'S, — AS,|,

t=71

(6)

where 77 is the first min value of difference between T'S
and AS, 75 is the end of optimization interval (71 +75),
peny = 0 if 7, — 75 > 75 and peny = 10 - (1; — 7o) if
7, — T2 < Ts (i.e. late stabilization).

7. Experiment Design

This research encompasses six case studies. Three dif-
ferent required behavior of the chaotic system and two
different cost functions were combined in the following
form:

e Case study 1: p — 1 UPO, Lozi map as
CPRNG/Controlled system with CFg;ppie-

e Case study 2: p — 1 UPO, Lozi map as
CPRNG/Controlled system with CFy .

e Case study 3: p — 2 UPO, Lozi map as
CPRNG/Controlled system with CFg;ppie-

e Case study 4: p — 2 UPO, Lozi map as
CPRNG/Controlled system with CFyy.

e Case study 5: higher order p — 4 UPO, Lozi map
as CPRNG/Controlled system with CFg;pple-

e Case study 6: higher order p — 4 UPO, Lozi map
as CPRNG/Controlled system with CFypy;.

This work is focused on the utilization of the chaos
driven DE for tuning of parameters for ETDAS control
method to stabilize desired Unstable Periodic Orbits
(UPO). In the described research, desired UPO was p—
1 (stable state). The original control method, ETDAS,
in the discrete form suitable for discrete chaotic maps
has the form Eq. @ and Eq. :

(®)

where K and R are adjustable constants, F' is the
perturbation; S is given by a delay equation utilizing
previous states of the system, m is the period of m-
periodic orbit to be stabilized. The perturbation F,
in Eq. may have arbitrarily large value, which can
cause diverging of the system. Therefore, F}, should fall
between —F,q0, Finaz. The ranges of all evolutionary
estimated parameters are given in Tab.

Ty,

Sp =Tp R Sn_m,
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Tab. 1: Estimated parameters.

Parameter | Min | Max
K -2 2
R 0 0.99
Fmax 0 0.9
Tab. 2: DE versions settings.
Parameter Value
PopSize 25
F' CanonicalDE 0.5
C) Canonical DE 0.9
F' ChaosDE 0.5
Cy ChaosDE 0.6
Generations 300
Max. C'F Evaluations (CFE) | 7500

Within the research, a total number of 50 simula-
tions for each case study and each DE version were
carried out. The parameter settings for both ChaosDE
and Canonical DE were given following way (Tab. .
Besides the parameters defining the size of population
and number of generations, other two internal tun-
ing parameters of DE, which are mutation constant F’
and crossover parameter C,., are very important in the
DE performance issue. Canonical DE utilizes the well-
proven and recommended settings [38] Recent research
in the chaos and complex dynamics driven heuristics
shows that DE requires lower values for aforementioned
internal parameters [30]. Therefore, simple tuning with
the incremental step of 0.1 has been conducted for
ChaosDE (Tab. [3).

Experiments were performed in an environment of
Wolfram Mathematica, PRNG operations. Therefore,
used the built-in Mathematica software pseudo-random
number generator. All experiments used different ini-

tialization, i.e. different initial population was gener-
ated in each run of Canonical/ChaosDE.

Tab. 4: The values for desiredUPOs.

UPO | Values of UPO of unperturbed system
p—1 rp = 0.454545
p—2 z1 = —0.382166; x2 = 0.700637
4 z1 = —0.691899; x2 = 0.334059;
p z3 = 0.086151; x4 = 1.020573
8. Results

All simulations were successful and gave new optimal
settings for ETDAS control method securing the fast
stabilization of the chaotic system at required behav-
iors, which were p — 1 UPO (stable state), p — 2 UPO
(oscillation between two values) and finally p —4 UPO.

Performances of both studied DE strategies are com-
pared with the representative of swarm algorithm,
which is Particle Swarm Optimizer (PSO). The canon-
ical version with inertia weight strategy [9] has been
utilized. The maximal cost function evaluation value,
population size and the number of iterations were set
identically as for the both DE strategies.

The organization of the results is following. Table
Tab.[6] Tab.[8] Tab.[9} Tab.[LI] and Tab.[12]are focused
on the performance comparisons between canonical
DE, ChaosDE driven by Lozi map; and swarm based
PSO algorithm. These tables contain simple statisti-
cal overview of evolutionary optimization/simulation
results i.e. average, median maximum, minimum (the
best solution), std. dev. values for the particular cost
function and for all 50 runs of both compared heuris-
tics. Italic numbers represent the best result.

Tab. 3: Results for tuning of internal parameters F' and C, for ChaosDE from the interval (0.1,0.9) and incremental step of 0.1
— Average cost function results for 30 runs of ChaosDE optimizing the higher nonlinear task: Case study 2.

(© 2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

Cr=0.1 Cr=0.2 Cr=0.3 Cr=0.4 Cr=0.5
F=0.1 | 4.39444 - 10~ 15 | 4.14344-10~1° | 4.16289 - 10~ 15 | 4.37956 - 10— 1° | 4.14627 - 10— 1°
F=0.2 | 4.37891-10~1® | 4.09678 - 10— 1> | 3.88405 10— | 3.95291-10~ ' | 3.92013-10—®
F=0.3 | 4.35117-10~1° | 3.96566 - 10— ™ | 3.84068-10~ ' | 3.82903-10-™ | 3.90125 10~ 1®
F=0.4 | 4.47881-10-T5 | 3.98678-10—1° | 3.85901-10' | 3.81791-10~1® | 3.82793 .10~ 1°
F=0.5 | 4.43944 .10~ 15 | 4.00844 - 10— 15 | 3.85903-10~1° | 3.81515-101° | 3.78464 .10~ 1°
F=0.6 | 4.44328-10~1® | 4.01397-10— ™ | 3.92736- 10~ ™ | 3.82460- 10~ | 3.81850- 10— 1®
F=0.7 | 4.43664-10—1° | 4.00505-10— 1 | 3.87791-10"™ | 3.80962-10- ™ | 3.82570 10~ I®
F=0.8 | 4.45275-10— 15 | 4.04009 1015 | 3.90736-10~ 1 | 3.83625-10"1° | 3.83625 10~ 1°
F=0.9 | 4.44226-10-15 | 4.13174-10-15 | 3.91846-10-1° | 3.82625-10"1° | 3.83793 .10~ 1%
Cr=0.6 Cr=0.7 Cr=0.8 Cr=0.9
F=0.1 | 5.83432-10~7 | 3.52617-10—1° 0.0000271935 0.172951
F=0.2 | 3.99240-10~1° | 4.15958-10~ ™ | 3.16606 - 10~ 12 0.0000531224
F=0.3 | 3.86901-10"1® 0.0000501611 | 3.96350-10—1° | 4.16068 - 10— 1°
F=0.4 | 3.79960-10-15 | 3.82458 .10~ 15 | 3.85238 .10~ 1° | 3.90238-10—1°
F=0.5 | 3.75962-10~1° | 3.77407 -10— ™ [ 3.79903 - 10— | 3.87791-10~ 1
F=0.6 | 3.79684-10~1° [ 3.79572-10-1° | 3.79625-10- ™ | 3.85182-10~ '
F=0.7 | 3.79680-10-15 | 3.76240-10~1® | 3.81350-10~1® | 3.88070 10— 1°
F=0.8 | 3.79125-10~15 | 3.76964 - 10— 15 | 3.80127-10~1° | 3.86570 - 10— 1°
F=0.9 | 3.78905-10~1° | 3.79184 .10~ [ 3.78738 - 101 | 3.85848-10~ 1
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Tab. 5: Comparison for ChaosDE, canonical DE and PSO case study 1.

Statistical | ChaosDE | Canonical DE PSO
data C'F Value C'F Value C'F Value
Min 0.520639 0.520639 0.530679
Max 0.522148 0.527132 0.573742

Average 0.520696 0.520769 0.548688
Median 0.520639 0.520639 0.549588
Std. Dev. 2.78-10~% 9.18-10~% 1.07-10~2

Tab. 6: Comparison for ChaosDE, canonical DE and PSO case study 2.

Statistical ChaosDE Canonical DE PSO
data CF Value CF Value CF Value
Min 3.53307 - 10~ 1° | 3.55511-10—1° | 4.41022-10"1°
Max 4.05511-10~15 | 3.91062-10~1° | 5.21022-10— 1%

Average 3.75362 - 10~ 15 3.7514- 10~ 4.79336 - 10~ 15
Median 3.75511-10~1° | 3.75511-10—1° | 4.78267-10~ 1
Std. Dev. 9.96 - 10~ 17 7.42-10°17 2.02977 - 10~ 16

Tab. 7: Best solutions — Joined case studies 1 and 2, p — 1 UPO.

Case study 1, | Case study 2,
Parameter CNgimples CNynr1,
ChaosDE ChaosDE
K —1.11259 —0.859989
Fraz 0.9 0.65695
R 0.289232 0.065673
CF Value 0.520639 3.53307 - 10~ 1°
Istab. Value 21 9
Avg. error per iteration 7.21-10"1® 2.07-10"1®
Tab. 8: Comparison for ChaosDE, canonical DE and PSO case study 3.
Statistical | ChaosDE | Canonical DE PSO
data CF Value CF Value CF Value
Min 7.04967 6.99829 7.29818
Max 7.54409 7.33379 8.05143
Average 7.30428 7.2827 7.67487
Median 7.33379 7.33379 7.6944
Std. Dev. | 7.77-102 9.29 - 102 0.216771
Tab. 9: Comparison for ChaosDE, canonical DE and PSO case study 4.

Statistical ChaosDE Canonical DE PSO
data CF Value CF Value CF Value
Min 1.62665- 109 | 1.68548 107 | 1.81061-10~°
Max 1.28207 - 10~2 | 1.36095 - 102 0.136879

Average 7.57338 - 10~ % | 6.40434-10—% 0.008665
Median 1.42814-10~% | 1.35227-10~ % 0.001515
Std. Dev. 1.86-1073 1.96-103 0.023862

Tab. 10: Best solutions — Joined case studies 3 and 4, p — 2 UPO.

Case study 3, | Case study 4,
Parameter CNgimples CNynNT,
ChaosDE ChaosDE
K 0.574025 —0.614527
Fraz 0.430788 0.508694
R 0.445453 0.528986
CF Value 6.99829 1.62665 - 109
Istab. Value 22 18
Avg. error per iteration 2.98-10°8 1.99 .10~ 11
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Tab. 11: Comparison for ChaosDE, canonical DE and PSO case study 5.

Statistical | ChaosDE | Canonical DE PSO
data CF Value CF Value CF Value
Min 13.8025 13.7305 14.9151
Max 19.2155 51.9391 29.6333
Average 15.4354 21.7940 14.5647
Median 14.2014 14.2548 22.4428
Std. Dev. 1.1312 5.4219 3.5719
Tab. 12: Comparison for ChaosDE, canonical DE and PSO case study 6.

Statistical ChaosDE Canonical DE PSO
data C'F Value C'F Value CF Value
Min 1.39076 - 103 | 1.45946 - 10—°> | 2.04937-10~3
Max 1.4131-10~2 1.28539 - 10~2 1.14558

Average 2.79004 - 10~3 | 2.09308 - 103 0.15435
Median 1.60824 - 103 1.62911 - 103 0.11778
Std. Dev. 3.49.1073 2.19-1073 0.25369

Tab. 13: Best solutions — Joined case studies 5 and 6, p — 4 UPO.

Case study 5, | Case study 6,
Parameter CNgimples CNynr,
ChaosDE ChaosDE
K —0.869336 —0.935913
Frnax 0.255559 0.623172
CF Value 13.7305 1.39076 - 10~3
Istab. Value 46 39
Avg. error per iteration 2.66 - 10— % 1.39-10°6

Results given in Tab. [7] Tab. [I0] and Tab. [I3] repre-
sent the direct comparison of chaos stabilization prop-
erties for the joined case studies related to the identical
UPO to be controlled. Tables show the best founded
individual solutions of parameters set up for ETDAS
control method, corresponding final C'F value. Also
these tables show the Istab. value representing the
number of iterations required for stabilization on the
desired UPO and further the average error between de-
sired output value and real system output from the last
20 iterations.

Graphical simulation outputs of the best individ-
ual solutions for particular case studies are depicted

in Fig. [0} Fig. [7] Fig. [I0] Fig. 1] Fig. [14] and Fig. [15]

Lozi map — CF_SIMPLE - Best Solution

0.8

0.6

0.4

02

10 20 30 40 50

Iteration

Fig. 6: Simulation of the best individual solution — ChaosDE
and Lozi map: Case study 1, CNgimpie, p — 1 UPO.
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whereas the Fig. [8] Fig.[9 Fig. Fig. Fig. [I6 and
Fig. show the simulation output of all 50 runs of
ChaosDE confirming the robustness of this approach.
For the illustrative purposes, all graphical simulations
outputs are depicted only for the variable x of the
chaotic systems.

The values for desired UPOs of unperturbed chaotic
Lozi map based on the mathematical analysis of the
systems are given in Tab. [

From the results presented in the Tab. [5] Tab. [6]
Tab. [7}, Tab. [§ Tab. [0 Tab.[I0] Tab. Tab. [12] and
Tab. it is clear that the C'Fgjpmpie is very conve-
nient for the evolutionary process, which means that
repeated runs of EA are providing identical optimal

Lozi map — CF_UNI — Best Solution

0.8

0.6

0.4

0.2

10 20 30 40 50

Iteration

Fig. 7: Simulation of the best individual solution — ChaosDE
and Lozi map: Case study 2, CNyny7, p— 1 UPO.
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results (i.e. very close to the possible global extreme).

This is graphically confirmed in the Fig.|8] Fig.[12]and
Fig. [16] which show all 50 simulations. All the runs

are merged into the one line.

Lozi map — CF_SIMPLE — All Solutions

L s B L L B
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04} f
02+ E
0 10 20 30 40 50
Iteration
Fig. 8: All 50 runs of EA — ChaosDE and Lozi map: Case study
1, CNgimpie, p — 1 UPO.
Lozi map — CF_UNI — All Solutions
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2 Fig. 13: All 50 runs of EA — ChaosDE and Lozi map, Case

311



THEORETICAL COMPUTER SCIENCE

VOLUME: 14 | NUMBER: 3 | 2016 | SEPTEMBER

Lozi map — CF_SIMPLE — Best Solution

T L B
1O} .
—:
= [ i
0.0 ]
0.5+ B
_10 ; L L L L L ;
0 10 20 30 40 50
Iteration
Fig. 14: Simulation of the best individual solution — Canonical
DE and Lozi map: Case study 5, CNgimpie, P — 4
UPO.
Lozi map — CF_UNI — Best Solution
T T T T T T T T T T T T T T T T T T T
Lok ]
0.5+ B
» [
0ol ]
0.5+ B
IR ANY NN RRVENTIN AU N ANFYSIN U S NI AU SR SR S—
0 10 20 30 40 50

Iteration

Fig. 15: Simulation of the best individual solution — Canonical
DE and Lozi map: Case study 5, CNgimple, P — 4
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On the other hand the disadvantage of including of
initial chaotic transient behavior of not stabilized sys-
tem into the cost function value and resulting very tiny
change of control method setting for the extremely sen-
sitive chaotic system is causing suppression of stabiliza-
tion speed and numerical precision.

Results obtained in the cases utilizing the C'Nyny
lend weight to the argument that the technique of pure
searching for periodic orbits is advantageous for faster
and more precise stabilization of the chaotic system.

The graphical comparisons of the performance anal-
ysis of ChaosDE, Canonical DE and PSO within all 6
case studies are given in complex Fig. [I§ and Fig. [I9
The first one represents the time evolution of the cost
function value for the best individual solution, which
are given in Tab. [I0] Tab. [II] and Tab. Moreover,
these solutions were also used for the graphical sim-
ulations in Fig. [6] Fig. [} Fig. [[0} Fig. 1} Fig. [[4
and Fig. [I5] Figure [I9 shows the comparisons of
time evolution of average CF values for all 50 runs of
ChaosDE/Canonical DE/PSO, confirming the robust-
ness of both used DE strategies within many repeated
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Fig. 16: All 50 runs of EA — Canonical DE and Lozi map: Case
study 5 - CNgimpie, p — 4 UPO.
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Fig. 17: All 50 runs of EA — ChaosDE and Lozi map: Case
study 6, CNyn7, p— 4 UPO.

runs. More about the findings is given in the conclusion
section of this paper.

9. Conclusion

In this paper, evolutionary algorithm Differential Evo-
lution was used for the evolutionary tuning of con-
troller parameters for the stabilization of selected dis-
crete chaotic system, which was the two-dimensional
Lozi map. The originality of the presented approach is
that the selected controlled discrete dissipative chaotic
system is used also within chaos enhanced heuristic
concept as the chaotic pseudo-random number genera-
tor to drive the mutation and crossover process in the
Differential Evolution. The idea was to utilize the hid-
den chaotic dynamics in the pseudo-random sequences
given by chaotic map to help Differential Evolution al-
gorithm in searching for the best controller settings for
the identical chaotic system.

The findings of the two different cost function de-
signs can be summarized as follows:
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Fig. 18: Comparisons of time evolution of the best individual solutions for ChaosDE, Canonical DE and PSO; from left to right
and from above to bottom: Case study 1 — Case study 6.

o CFsimpie is very convenient for the evolutionary e The second universal C'F' design brings the pos-
process, which means that most of the repeated sibility of using it problem-free for any desired
runs of EA are giving identical optimal results. behavior of arbitrary chaotic systems, but at the
On the other hand the disadvantage of including cost of the highly chaotic C'F surface. Neverthe-
of initial chaotic transient behavior of not stabi- less, the embedding of the chaotic dynamics into
lized system into the cost function value and re- the evolutionary algorithms helped to deal with
sulting small change of control method setting for such an issue. Direct searching for stabilization
extremely sensitive chaotic system is causing sup- points brings faster and more precise stabilization
pression of stabilization speed and numerical pre- of chaotic oscillations.
cision . Moreover, this design has many limitations

for stabilizing of higher order oscillations.
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Fig. 19: Comparisons of time evolution of average cost function values of the best solutions from all 50 runs of ChaosDE, Canonical
DE and PSO; from left to right and from above to bottom: Case study 1 — Case study 6.

Performance comparisons between canonical version, solutions with very fast convergence towards cost
chaos driven heuristic and swarm based algorithm PSO function extremes (see Fig. f more complex case
revealed following findings: studies 4, 5 and 6). Thus, less iterations of heuris-

tics is required for acceptable level of chaos sys-

e The overall performance of canonical version of tem stabilization. Comparisons between both DE

DE is comparable with ChaosDE within simpler versions and swarm based PSO algorithm show,

case studies with CFgjpmpie. There is the only
moderate difference in selected observed statisti-
cal properties of results. ChaosDE shows signifi-
cantly better performance with complex universal
CF and in case studies dealing with higher or-
der of oscillations. Furthermore, ChaosDE gives

that PSO is not good choice in the task of nonlin-
ear /chaos control optimization.

e The results show that embedding of the chaotic
dynamics in the form of chaotic pseudo-random
number generator into the differential evolution
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algorithm may help to improve the performance
and robustness of the DE. Thus, obtaining optimal
solutions secure the very fast and precise stabiliza-
tion, especially for very chaotic and nonlinear C'F’
surface in case of the CFyyr.

This work has experimentally confirmed that embed-
ding the hidden chaotic dynamics into the evolutionary
process in the form of chaotic pseudo-random num-
ber generators may help to obtain better results and
avoid problems connected with evolutionary computa-
tion such as premature convergence and stagnation in
local extremes.
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