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Abstract. This paper presents a new biased method
for order reduction of linear continuous time interval
systems. This method is based on the Stability equa-
tion method, Pade approximation and Kharitonov’s
theorem. The higher order interval system is repre-
sented by four Kharitonov transfer functions using the
Kharitonov’s theorem, and then reduced order models
are obtained by the general form of the Stability equa-
tion method and Pade approximation. The Stability
equation method is used to obtain a reduced order de-
nominator polynomial while the Pade approximation is
used for reduced order numerator coefficients. This
method generates a stable reduced order model if the
original higher order interval system is stable. The
proposed method is illustrated with the help of typical
numerical examples considered from the literature, and
these are compared with well-known methods to show
the efficacy of the proposed method.
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1. Introduction

In recent decades, to carry out effective research much
effort has been made in the field of model order re-
duction. The original system is of higher order and
it is cumbersome. This nature of higher order system
analysis is both tedious and costly. The understand-
ing of the behaviour of the system is difficult due to
complexity. To avoid the above problems, order reduc-
tion implementation is necessary. Model Order Reduc-
tion (MOR) is a branch of systems and control theory

for reducing the complexity of a higher system while
preserving their input - output behaviour. Order re-
duction methods are broadly classified into two types.
Frequency domain order reduction methods are for a
transfer function model. Time domain order reduction
methods are for a state space model. Several meth-
ods are available in the literature for the order reduc-
tion of linear continuous systems in the time domain
as well as the frequency domain. The reduced order
model obtained in the frequency domain gives better
matching of the impulse response with its higher order
system. Some of the most popularly used frequency
domain order reduction methods are Pade approxima-
tion and continued fraction methods. These are com-
putationally fast and being able to exactly match the
maximum number of system parameters (usually time
moments or Markov parameters) to the reduced model.
But these methods have a disadvantage - the stabil-
ity of the reduced model is not guaranteed for a sta-
ble system. Efforts have been devoted to developing
stability preserving methods such as the Routh sta-
bility criterion, Mihailov criterion etc. The stability
of these methods is achieved, but the disadvantage of
these methods is loss of accuracy. Among these various
model order reduction methods for stability preserva-
tion available in the literature, the stability equation
method [2] is one of the most popular techniques. The
advantage of this method is that it preserves stability
in the reduced model, if the original high-order system
is stable, and retains the first two time–moments of
the system. These methods are applicable for fixed -
coefficients systems only. However, in many systems
the coefficients are constants but uncertain within a fi-
nite range. Such systems are classified as interval sys-
tems. The above methods are applicable for fixed sys-
tems only. In [4] γ − δ Routh Approximation method
for interval systems is proposed. The reduced model
of interval system is unstable even when the original
higher order interval system is stable. An improve-
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ment is proposed in [5] to the γ − δ Routh approxima-
tion for interval systems using the Kharitonov’s poly-
nomials such that the resulting interval Routh approx-
imant is robustly stable. To improve the effectiveness
of model order reduction, many mixed methods have
been proposed recently [8], [9], [10] based on interval
arithmetic. As these methods use interval arithmetic,
the stability of the reduced order model is not guaran-
teed, if the original interval system is stable. In [11]
Kharitonov’s theorem on robust Hurwitz polynomials
is simplified for low-order polynomials. In [12] an inter-
val arithmetic is used to construct a generalized Routh
table for determining the denominator polynomial of
the reduced system. The reduced numerator polyno-
mial is obtained using the factor division method and
the steady state error is minimized using the gain cor-
rection factor.

Reduction techniques for linear interval systems us-
ing the Kharitonov’s theorem are presented [13] in [14]
to generate stable reduced technique for linear inter-
val models. In [15] recently a reduction technique for
linear interval systems using Kharitonov’s theorem in-
terval and Routh-Approximation is presented to gen-
erate a stable reduced order interval system. In [16]
the reduced order interval model is obtained using
Kharitonov’s polynomials, which retains stability and
full impulse response energy of the higher order interval
system in its reduced order interval model.

In this paper, model order reduction of interval sys-
tems is carried out by using the Kharitonov’s theorem,
stability equation method and Pade approximation
method. The denominator of the reduced model is ob-
tained by the stability equation method and the numer-
ator is obtained by the Pade approximation method.
Thus the stability is guaranteed if the original system
is stable.

2. Problem Formulation

Consider a higher order continuous interval system by
the transfer function:

Gn(s) =

[B−0 , B
+
0 ] + [B−1 , B

+
1 ]s+ . . .+ [B−n−1, B

+
n−1]s

n−1

[A−0 , A
+
0 ] + [A−1 , A

+
1 ]s+ . . .+ [A−n , A

+
n ]sn

,
(1)

where [A−i , A
+
i ] for i = 0, 1, . . . , n are denominator co-

efficients of Gn(s) with A−i and A+
i as lower and upper

bounds of interval [A−i , A
+
i ] respectively, and [B−i , B

+
i ]

for i = 0, 1, . . . , n − 1 are numerator coefficients of
Gn(s) with B−i and B+

i as lower and upper bounds
of interval [B−i , B

+
i ] respectively.

It is proposed to obtain a reduced order interval
model of the form:

Gr(s) =

[b−0 , b
+
0 ] + [b−1 , b

+
1 ]s+ . . .+ [b−r−1, b

+
r−1]s

r−1

[a−0 , a
+
0 ] + [a−1 , a

+
1 ]s+ . . .+ [a−r , a

+
r ]sr

,
(2)

where [a−i , a
+
i ] for i = 0, 1, . . . , r are denominator co-

efficients of Gr(s) with a−i and a+i as lower and upper
bounds of interval [a−i , a

+
i ] respectively, and [b−i , b

+
i ]

for i = 0, 1, . . . , r−1 are numerator coefficients of Gr(s)
with b−i and b+i as lower and upper bounds of interval
[b−i , b

+
i ] respectively.

3. Proposed Method

Theorem 1 (Kharitonov theorem). An interval poly-
nomial family p(s) =

∑n
i=0[α

−
i , α

+
i ] with invariant de-

gree is robustly stable if its four Kharitonov polynomials
are stable.

According to the Kharitonov theorem, every interval
polynomial p(s) is associated with four following fixed
parameter polynomials called Kharitonov polynomials.
They are defined as:

K1(s) = α−0 + α−1 s+ α+
2 s

2 + . . .+ α−n s
n

K2(s) = α−0 + α+
1 s+ α+

2 s
2 + . . .+ α−n s

n

K3(s) = α+
0 + α−1 s+ α−2 s

2 + . . .+ α+
n s

n

K4(s) = α+
0 + α+

1 s+ α−2 s
2 + . . .+ α+

n s
n

. (3)

The interval system is stable if and only if its four
Kharitonov polynomials satisfies Routh Hurwitz sta-
bility criterion

3.1. Reduction Procedure

Consider a family of real interval transfer function:

Gn(s) =
N(s)

D(s)
=

[B−0 , B
+
0 ] + [B−1 , B

+
1 ]s+ ...+ [B−n−1, B

+
n−1]s

n−1

[A−0 , A
+
0 ] + [A−1 , A

+
1 ]s+ ...+ [A−n , A

+
n ]sn

.
(4)

The four fixed Kharitonov’s transfer functions associ-
ated with Gn(s) are given as:

G1
n(s) =

N1
n(s)

D1
n(s)

=

=
B−0 +B−1 s+B+

2 s
2 + . . .+B−n−1s

n−1

A−0 +A−1 s+A+
2 s

2 + . . .+A−n sn

=
B−10 +B−11s+B+

12s
2 + . . .+B−1(n−1)s

n−1

A−10 +A−11s+A+
12s

2 + . . .+A−1ns
n

.

(5)
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G2
n(s) =

N2
n(s)

D2
n(s)

=

=
B−0 +B+

1 s+B+
2 s

2 + . . .+B−n−1s
n−1

A−0 +A+
1 s+A+

2 s
2 + . . .+A−n sn

=
B−20 +B+

21s+B+
22s

2 + . . .+B−2(n−1)s
n−1

A−20 +A+
21s+A+

22s
2 + . . .+A−2ns

n
.

(6)

G3
n(s) =

N3
n(s)

D3
n(s)

=

=
B+

0 +B−1 s+B−2 s
2 + . . .+B+

n−1s
n−1

A+
0 +A−1 s+A−2 s

2 + . . .+A+
n sn

=
B+

30 +B−31s+B−32s
2 + . . .+B+

3(n−1)s
n−1

A+
30 +A−31s+A−32s

2 + . . .+A+
3ns

n
.

(7)

G4
n(s) =

N4
n(s)

D4
n(s)

=

=
B+

0 +B+
1 s+B−2 s

2 + . . .+B+
n−1s

n−1

A+
0 +A+

1 s+A−2 s
2 + . . .+A+

n sn

=
B+

40 +B+
41s+B−42s

2 + . . .+B+
4(n−1)s

n−1

A+
40 +A+

41s+A−42s
2 + . . .+A+

4ns
n

.

(8)

The above Kharitonov’s transfer functions are, in
general, represented as:

GI
n(s) =

N I
n(s)

DI
n(s)

=

n−1∑
j=0

BIjs
j

n∑
j=0

AIjsj
. (9)

1) Step 1

Determination of the denominator coefficients of lower
order system for first Kharitonov transfer function by
stability equation method:

For I=1:

G1
n(s) =

N1
n(s)

D1
n(s)

=

=
B−10 +B−11s+B+

12s
2 + . . .+B−1(n−1)s

n−1

A−10 +A−11s+A+
12s

2 + . . .+A−1ns
n

.

(10)

For first Kharitonov transfer function the reduced or-
der model is:

G1
r(s) =

N1
r (s)

D1
r(s)

=

=
B−10 +B−11s+B+

12s
2 + . . .+B−1(r−1)s

r−1

A−10 +A−11s+A+
12s

2 + . . .+A−1rs
r

.

(11)

For stable first Kharitonov transfer function G1
n (s),

the denominator D1
n(s) of the Higher Order System

(HOS) is bifurcated in the even and odd parts in the
form of stability equations as:

Dn
e (s) = A10

m1∏
i=1

(
1 +

s2

z2i

)
Dn

o (s) = A11

m2∏
i=1

(
1 +

s2

p2i

)
 , (12)

where m1 and m2 are the integer parts of n/2 and
(n− 1)/2 respectively and z21 < p21 < z22 < p22.

Now by discarding the factors with large magnitudes
of z2i and p2i in Eq. (12), the stability equations for rth
order Lower Order System (LOS) are obtained as:

Dr
e(s) = a10

m3∏
i=1

(
1 +

s2

z2i

)
Dr

o(s) = a11
m4∏
i=1

(
1 +

s2

p2i

)
 , (13)

where m3 and m4 are the integer parts of r/2 and
(r − 1)/2, respectively.

Combining these reduced stability equations and
therefore properly normalizing it, the rth order denom-
inator of Lower Order System (LOS) is obtained as:

D1
r(s) = Dr

e(s) +Dr
o(s) =

r∑
i=0

a1is
i. (14)

Therefore, the denominator polynomial in Eq. (11) is
now known, which is given by:

D1
r(s) = a10 + a11s+ a12s

2 + . . .+

+a1(r−1)s
r−1 + a1rs

r.
(15)

The same procedure is employed for remaining
Kharitonov’s transfer function for reduced order de-
nominator.

D2
r(s) = a20 + a21s+ a22s

2 + . . .+

+a2(r−1)s
r−1 + a2rs

r,

D3
r(s) = a30 + a31s+ a32s

2 + . . .+

+a3(r−1)s
r−1 + a3rs

r,

D4
r(s) = a40 + a41s+ a42s

2 + . . .+

+a4(r−1)s
r−1 + a4rs

r.

(16)

2) Step 2

Determination of the numerator coefficients of the re-
duced model by Pade approximation:
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For the first Kharitonov transfer function, it can be
expanded in the power series about s=0 as:

G1
n(s) =

n−1∑
i=0

B1is
i

n∑
i=0

A1isi
=

= E10 + E11s+ E21s
2 + . . .

(17)

The coefficients of the power series expansion can
also be calculated as follows:

E10 =
B10

A10
. (18)

E1i =
1

A10

[
B1i −

i∑
j=1

A1jE1(i−j)

]
i > 0,

B1i = 0 i > n− 1.

(19)

The rth order reduced model for the first Kharitonov
transfer function is taken as:

G1
r(s) =

N1
r (s)

D1
r(s)

=

r−1∑
i=0

b1is
i

r∑
i=0

a1isi
. (20)

Here D1
r(s) is known through the stability equation

method.

For N1
r (s) of equation to be Pade approximants of

G1
n(s) of equation, we have:

b10 = a10E10

b11 = a10E11 + a11E10

...
br−1 = a10E1(r−1) + ...+ ar−2E11 + ar−1E10

 , (21)

the coefficients b1j ; j = 0, 1, 2, . . . , r − 1 can be found
by solving the above r linear equations.

Hence the numerator N1
r (s) is obtained as:

N1
r (s) = b10 + b11s+ b12s

2 + . . .+ br−1s
r−1. (22)

The Step 1 and Step 2 procedure is repeated for
remaining Kharitonov transfer function.

After obtaining four Kharitonov reduced order trans-
fer functions, the reduced order interval transfer func-
tion is obtained by using the below equation:

Gr(s) =

r−1∑
j=0

[min (bIj) ,max (bIj)] s
j

r∑
j=0

[min (aIj) ,max (aIj)] sj
. (23)

Integral Squared Error (ISE):

The Integral Squared Error (ISE) between the orig-
inal higher order system and reduced order system is
represented in the form:

j =

∫ ∞
0

[y (t)− yr (t)]
2 dt. (24)

Mathematically, the integral squared error can be rep-
resented as:

j =

N∑
i=0

[y (t)− yr (t)]
2
, (25)

where, y(t) is the unit step response of higher order
and yr(t) is the unit step response lower order system
at the tth instant in the time interval 0≤t≤N , where
N is to be chosen.

3.2. Numerical Example

Example 1. Consider a higher order interval system
[4]:

G(s) =

=
[2, 3]s2 + [17.5, 18.5]s+ [15, 16]

[2, 3]s3 + [17, 18]s2 + [35, 36]s+ [20.5, 21.5]
.

(26)

This higher order interval system can be represented
as four Kharitonov higher order transfer functions
given as:

G1
3(s) =

3s2 + 17.5s+ 15

3s3 + 18s2 + 35s+ 20.5
,

G2
3(s) =

3s2 + 18.5s+ 15

2s3 + 18s2 + 36s+ 20.5
,

G3
3(s) =

2s2 + 17.5s+ 16

3s3 + 17s2 + 35s+ 21.5
,

G4
3(s) =

2s2 + 18.5s+ 16

2s3 + 17s2 + 36s+ 21.5
.

(27)

From the first Kharitonov transfer function:

G1
3(s) =

3s2 + 17.5s+ 15

3s3 + 18s2 + 35s+ 20.5
. (28)

Step 1: Bifurcating the denominator of the above
Higher Order System (HOS) in even and odd parts,
we get the stability equations as:

Dn
e (s) = 20.5 + 18s2 = 20.5

[
1 +

s2

1.14

]
, (29)

Dn
0 (s) = 35s+ 3s3 = 35s

[
1 +

s2

11.67

]
. (30)

Now by discarding the factors with large magnitude
of z2i and p2i in Dn

e (s)and Dn
o (s) respectively, the sta-

bility equations for the second-order reduced model are
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given by:

Dr
e(s) = 20.5

[
1 +

s2

1.14

]
,

Dr
0(s) = 35s,

D1
r = Dr

e(s) +Dr
o(s),

= 20.5 + 17.99s2 + 35s,

= s2 + 1.94s+ 1.14.

(31)

The reduced model:

G1
r(s) =

b11s+ b10
s2 + 1.94s+ 1.14

. (32)

Step 2: By using Pade approximation method For the
first Kharitonov transfer function:

G1
3(s) =

B12s
2 +B11s+B10

A13s3 +A12s2 +A11s+A10
,

=
3s2 + 17.5s+ 15

3s3 + 18s2 + 35s+ 20.5
.

(33)

The reduced denominator obtained by Step 1:

G1
r(s) =

b11s+ b10
a12s2 + a11s+ a10

=
b11s+ b10

s2 + 1.94s+ 1.14
, (34)

E1i =
1

A10

B1i −
i∑

j=1

A1jE1(i−j)

 , (35)

e1i =
1

a10

b1i − i∑
j=1

a1je1(i−j)

 , (36)

E1i = e1i. (37)

Substituting i=0 in Eq. (35) and Eq. (36):

B10

A10
=
b10
a10

, (38)

15

20.5
=

b10
1.14

, (39)

b10 = 0.84. (40)

Substituting i=1 in Eq. (35), Eq. (36) and Eq. (37):

b11 = 0.97222. (41)

Then reduced numerator is:

N1
r (s) = 0.97s+ 0.84. (42)

The reduced order of first Kharitonov transfer function
is:

G1
2(s) =

0.97s+ 0.84

s2 + 1.94s+ 1.14
. (43)

Same as for remaining Kharitonov transfer function
the reduced order transfer functions are:

G2
2(s) =

1.03s+ 0.84

s2 + 2s+ 1.14
, (44)

G3
2(s) =

1.03s+ 0.94

s2 + 2.06s+ 1.26
, (45)

G4
2(s) =

1.08s+ 0.94

s2 + 2.12s+ 1.26
. (46)

Therefore, finally reduced order interval model ob-
tained by using Eq. (23):

G2(s) =
[0.97, 1.08]s+ [0.84, 0.94]

[1, 1]s2 + [1.94, 2.12]s+ [1.14, 1.26]
. (47)

Comparing this with model order reduction using Mi-
hailov criterion and Cauer Second form in Eq. (48) [10].

Proof for Stability

According to [11], the necessary and sufficient condi-
tion for robust stability of interval polynomial for order
n = 1 and n = 2 is positive lower bounds on the co-
efficients. The denominator of Reduced Order Interval
Model (ROIM) obtained by the proposed method is:

D2 (s) = [1, 1]s2 + [1.94, 2.12]s+ [1.14, 1.26]. (49)

It is seen from the denominator of ROIM from the
Exm. 1 that the lower bound coefficients are positive,
hence it can be stated that the system is robustly sta-
ble.

The step response of the proposed reduced interval
system compared to [10].

Tab. 1: Comparison of integral square error for reduced interval
system model.

Method of
order reduction

ISE for
lower limit

ISE for
upper limit

Proposed Method 0.0019785 0.00174763
(D.Kranthi Kumar,
S.K.Nagar and J.P.Tiwari,
October 2011)[10]

0.0089 0.0113

It has been observed from Fig. 1 and Fig. 2 the step
responses of the lower and upper bounds of the origi-
nal higher order interval system and the reduced order
interval model obtained by the proposed method are
closely matching. And thereby the reduced order in-
terval model retains the stability. It is observed that
the time moments of the original system and model ob-
tained by the proposed reduced order system matches,
and also has better matching of transient and steady
state response than [10]. It is also observed from Tab. 1
that the ISEs of the lower and upper bounds of the re-
duced order transfer functions model obtained by the
proposed method are lesser than the method given in
[10]. As the method in [10] uses the interval arithmetic
for order reduction, thereby sometimes generates un-
stable reduced order interval models for stable higher
order interval systems. Whereas the proposed method
generate stable models by the use of Kharitonov’s the-
orem. Hence the proposed method avoids the difficulty
of generating unstable models.
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R2(s) =
[11.1949, 20.3706]s+ [14.1674, 16.9413]

[17.0011, 18.0007]s2 + [31.3826, 33.6111]s+ [20.3061, 21.2052]
. (48)

Fig. 1: Step response comparison of lower bounds.

Fig. 2: Step response comparison of upper bounds.

Example 2. Consider a higher order interval system
[12]:

Gn (s) =

=
[1.9, 2.1]s6 + [24.7, 27.3]s5+

[0.95, 1.05]s7 + [8.779, 9.703]s6+
· · ·

· · · +[157.7, 174.3]s4+

+[52.23, 57.73]s5 + [182.9, 202.1]s4+
· · ·

· · · +[542, 599]s3 + [930, 1028]s2+

+[429.1, 474.2]s3 + [572.632.7]s2+
· · ·

· · · +[721.8, 797.8]s+ [187.1, 206.7]

+[325.3, 359.5]s+ [57.35, 63.39]
.

(50)

This higher order interval system can be represented as
four Kharitonov higher order transfer functions given
as:

G1
7(s) =

=
2.1s6 + 24.7s5 + 157.5s4 + 599s3+

1.05s7 + 9.703s6 + 52.23s5 + 182.9s4+
· · ·

· · · +1028s2 + 721.8s+ 187.1

+474.2s3 + 632.7s2 + 325.3s+ 57.35
.

(51)

G2
7(s) =
2.1s6 + 27.3s5 + 157.5s4 + 542s3+

0.95s7 + 9.703s6 + 57.73s5 + 182.9s4+
· · ·

· · · +1028s2 + 797.8s+ 187.1

+429.1s3 + 632.7s2 + 359.5s+ 57.35
.

(52)

G3
7(s) =
1.9s6 + 24.7s5 + 174.3s4 + 599s3+

1.045s7 + 8.779s6 + 52.23s5 + 202.1s4+
· · ·

· · · +930s2 + 721.8s+ 206.7

+474.2s3 + 474.2s2 + 325.3s+ 63.39
.

(53)

G4
7(s) =
1.9s6 + 27.3s5 + 174.3s4 + 542s3+

1.05s7 + 8.779s6 + 57.7s5 + 202.1s4+
· · ·

· · · +930s2 + 797.8s+ 206.7

+429s3 + 572.5s2 + 359.5s+ 63.39
.

(54)

The reduced order of four Kharitonov transfer func-
tions obtained by using Step 1, Step 2 in Proposed
Method described in section 3. is as follows:

G1
2(s) =

721.8s+ 187.1

615.75s2 + 325.3s+ 57.35
, (55)

G2
2(s) =

797.8s+ 187.1

615.75s2 + 359.50s+ 57.35
, (56)

G3
2(s) =

721.8s+ 206.7

549.29s2 + 325.30s+ 63.39
, (57)

G4
2(s) =

797.8s+ 206.7

549.29s2 + 359.50s+ 63.39
. (58)

Therefore, finally reduced order interval model ob-
tained by using Eq. (23), in Eq. (59):

G2(s) =
[721.8, 797.8]s+

[549.29, 615.75]s2 + [325.3, 359.5]s+
· · ·

· · · +[187.1, 206.7]

+[57.35, 63.39]
.

(59)

The reduced order interval model is compared with
well-known methods in literature. The reduced order
interval model obtained by using a method from [4]:

R2b(s) =
[1.61, 1.84]s+ [0.27, 0.53]

[1, 1]s2 + [0.52, 0.83]s+ [0.08, 0.16]
. (60)

The reduced order interval model obtained by using a
method from [12]:

R2s(s) =
[260.955, 861.331]s+ [175.232, 218.581]

[364.72, 366.62]s2 + [281.08, 282.35]s+ [59.74, 61]
.

(61)
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Proof for Stability

According to [11], the necessary and sufficient condi-
tion for robust stability of interval polynomial for order
n = 1 and n = 2 is positive lower bounds on the co-
efficients. The denominator of Reduced Order Interval
Model (ROIM) obtained by the proposed method is:

D2 (s) = [549.29, 615.75]s2 + [325.3, 359.5]s+
· · ·+ [57.35, 63.39].

(62)

It is seen from the denominator of ROIM from the
Exm. 1 that the lower bound coefficients are positive,
hence it can be stated that the system is robustly sta-
ble.

Tab. 2: Comparison of integral squared error for reduced inter-
val system model.

Method of
order reduction

ISE for
lower limit

ISE for
upper limit

Proposed Method 0.8989 0.2029
(Bandyopadhyay) [4] 2.2599 5.954
(Selvaganesan) [12] 3.0105 4.0216

The step response of the proposed reduced interval
system compared to [4], [12].

Fig. 3: Step response comparison of lower bounds.

Fig. 4: Step response comparison of upper bounds.

It has been observed from Fig. 3 and Fig. 4 the step
responses of the lower and upper bounds of the origi-
nal higher order interval system and the reduced order

interval model obtained by the proposed method are
closely matching. And thereby the reduced order in-
terval model retains the stability. It is observed that
the time moments of the original system and model ob-
tained by the proposed reduced order system matches,
and also has better matching of transient and steady
state response than [4] and [12]. It is also observed
from Tab. 2 that the ISEs of the lower and upper
bounds of the reduced order transfer functions model
obtained by the proposed method are lesser than the
methods given in [4] and [12]. The methods given in [4]
and [12] use the interval arithmetic for order reduction,
thereby sometimes generate unstable reduced order in-
terval models for stable higher order interval systems.
Whereas the proposed method uses the Kharitonov’s
theorem for order reduction; hence it avoids the diffi-
culty in generating unstable models.

4. Conclusion

In this paper, a biased method of order reduction is
proposed. The reduced model of denominator polyno-
mial is obtained by using the stability equation method
and the numerator is determined by the Pade approx-
imation. It has been observed that the time moments
of the reduced order model obtained by the proposed
method matches with the original system. In [4], [10],
and [12] the reduced order interval model is obtained
by using interval arithmetic, hence the use of interval
arithmetic, sometimes generating unstable reduced or-
der model for stable higher order interval system. The
proposed method guarantees the stability of reduced
order model if the original system is stable and mini-
mizes the ISE. The response of the reduced model is
good.
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