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Summary The mathematical model of cylindrical linear induction motor (C-LIM) fed via frequency converter is presented in 
the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of 
ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based 
on circuit method and analogy to rotary induction motor. The analogy between both: (a) stator and rotor windings of rotary 
induction motor and (b) winding of primary part of C-LIM (inductor) and closed current circuits in external secondary part of 
C-LIM (race) is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with 
equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency 
converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a) starting the 
motor at various static loads and various synchronous velocities and (b) reverse of the motor at the same operation 
conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient 
linear velocity and transient phase current. 
 
1. INTRODUCTION 
 

The mathematical model of C-LIM fed via 
frequency converter is referred to construction of C-
LIM made in Department of Electrical Machines and 
Drives at Faculty of Electrical Engineering at 
Technical University of Cz�stochowa. The scheme 
of C-LIM structure being a base for development of 
mathematical model is depicted in Fig. 1. A real 
model of C-LIM is shown in Fig. 2 whereas inductor 
of C-LIM is shown in Fig. 3. 

 

 
 

Fig. 1. Structure of cylindrical linear induction motor 
 

 
 

Fig. 2. General view of C-LIM 

 

 
 

Fig. 3. Inductor of C-LIM 
 

Mathematical model of C-LIM presented in this 
paper is a modified model presented in [3]. The aim 
of modification is possibility of simulating the transient 
states of C-LIM with inductor fed via frequency 
converter. In the paper [3] the mathematical model 
of C-LIM connected to the power grid was analyzed. 
 
2. MATHEMATICAL MODEL 
 

The following assumptions are taken into consi-
deration in order to develop mathematical model of 
C-LIM: (a) the circuit correspondence between  
C-LIM inductor and cylindrical race of motor 
secondary part, (b) regularity of air-gap, (c) constant 
magnetic permeability of inductor and race magnetic 
circuits, (d) self-inductances and mutual inductances 
are independent of currents in C-LIM windings, (e) 
race resistance is independent of temperature, (f) the 
inductor moves along axis 0x, (g) a three-phase 
supply system fed C-LIM inductor is symmetrical. 

It is assumed that “w” represents inductor (primary 
part of C-LIM) whereas “b” represents race (secondary 
part of C-LIM). The equations of electro-magnetic 
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transient states in magnetically coupled circuits of 
C-LIM are expressed as the following matrix: 
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where respective matrix components are determined 
for i, j = 1, 2, 3 by the following dependences: 
 

 [ ] 13×= wiw UU , [ ] 13×= wiw II , [ ]
33×

= wijw RR   

 [ ] 13×= bib UU , [ ] 13×= bib II , [ ]
33×

= bijb RR   

  (2) 

[ ] 330 ×=N , [ ] 33×= ij
wwww MM , [ ]

33×= ij
bbbb MM   

 [ ]
33×= ij

wbwb MM , [ ]
33×= ij

bwbw MM  

 
where wiwij RR =  if i = j and 0=wijR  if i ≠ j, 

bibij RR =  if i = j and 0=bijR  if i ≠ j. 

A formula that expresses a C-LIM electromagnetic 
force Fe and equation of inductor motion are given 
as follows: 
 

 [ ]
�
�

�

�

�
�

�

�
⋅
�
�

�

�

�
�

�

�

∂
∂⋅=

b

w

bbbw

wbwwT
b

T
we x

F
I

I

MM

MM
II

2
1

 

 

 oe FFDv
dt
dv

m −=+  (3) 

 
where m, D, v, x are mass, dissipation constant, 
linear velocity and shift along the axis 0x of movable 
part of motor (inductor), dtdxv = , Fo is load force. 

The matrix Mww of coefficients is given as follows: 
 
 150 KJM ⋅⋅+= wwww L,L µσ  (4) 
 

where [ ]
33×

= ijJJ , 1=ijJ  if i = j and 0=ijJ  if i ≠ j, 

[ ]
3311 ×

= ijKK , 2=ijK  if i = j and 1−=ijK  if i ≠ j, 

The eigenvalues of matrix K1 are determined using 
matrix S including eigenvectors in order to obtain 

diagonal matrix 1
1

−⋅⋅ SKS  of matrix K1 as well as 
diagonal matrix D1 of matrix Mww. The abovementioned 
transformations are explained below: 
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where 32πjea = . Diagonal matrix of matrix Mww 
including inductor self-inductances and diagonal 

matrix of matrix Mbb including race self-inductances 
are expressed as D1 and D2, respectively: 
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3
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w
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 011
2 2

3
JJD ⋅⋅+= bb LL µσ   (6) 

 
where bw L,L µµ   are magnetization inductances in 

inductor terms and race terms, bw L,L σσ   are leakage 
inductances in inductor terms and race terms, 

2ϑµµ bw LL = , 2ϑσσ bw LL = , ϑ is transformation 

ratio, [ ]
33

011011
×

= ijJJ  where 1011 =ijJ  if i = j = 2,3 

and 0011 =ijJ  if i = j = 1 or i ≠ j. 

Matrix of mutual inductances between inductor 
and race are determined as follows: 
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where 1−== ϑµw
'

bw
'

wb LMM , 
τ
π=n , τ is pole 

pitch. For further transformations trigonometric 
functions in (7) are expressed by the following 
exponential functions according to dependences (8). 
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Taking into consideration dependences (8), matrix of 
mutual inductances between inductor and race may 
be expressed as follows: 
 

SESM ⋅⋅⋅′⋅= −
1

1

2
3

wbwb M , [ ] 3311 ×= ijEE  (9) 

 

where jnx* eEE == 33
1

22
1 , 01 =ijE  if i = j = 1 or i ≠ j. 

Diagonal matrixes D3 and D4 including mutual 
inductances between inductor and race as well as 
between race and inductor are expressed as follows: 
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 24 2
3

ED ⋅′⋅= bwM ,     [ ] 3322 ×= ijEE   

 

where jnx* eEE −== 33
2

22
2 , 01 =ijE  if i = j = 1 or i ≠ j. 

Matrix equations (11) derived from system (1) are 
left-sided multiplied by transformation matrix S. 

Moreover, the unit matrix SSJ ⋅= −1  is added. The 
transformations are explained by system of equations 
(12). System of equations (12) after multiplication 
and development of matrixes takes a form (13). 
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Taking into consideration internal symmetry of 
primary and secondary parts of C-LIM as well as closed 
current circuits of race the following dependences 
(14) between selected variables of mathematical 
model for structure depicted in Fig. 1 are as follows: 
 
 wwww RRRR === 321 ; bbbb RRRR === 321  
  (14) 

  0321 === bbb UUU ; ( ) ( ) ( ) 0210 === bbb UUU  
 
Matrix equations (13) for each vector are as follows: 
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Two equations of the system (15) including dependences 
between zero-sequence variables are independent of 
other equations and will be omitted in further analysis. 

In general case the components of three-phase 
supply voltage may be expressed as follows: 
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where Umi, ω i, ϕi are amplitude, angular frequency 
and initial phase for i-th  harmonic of supply 
voltage, ω1 is angular frequency for fundamental 
harmonic. The zero-sequence, positive-sequence and 
negative-sequence components for voltages defined 
by dependences (16) are given as the following 
matrix equation: 
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It results from (17) that U(1) and U(2) are coupled each 
other, i.e. U(1) = U(2)*. Thus, only positive-sequence 
component is chosen for further transformations: 
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The system of equations (18) is obtained as a result 
of transformation of race variables to the inductor 
coordinates. 
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Equivalent variable ( ) jnx'
b

'
b eII ⋅= 1  is applied in 

order to transform the currents conducted in closed 
circuits of race to the reference system connected to the 

inductor. Moreover, the equivalent variables ( )1
ww II =  

and ( )1
ww UU =  are applied in order to simplify 

notation. The equations of electromagnetic transient 
states expressed in reference system connected to the 
inductor are obtained. The equations together with 
motion equation form mathematical model of C-LIM 
described by the following system of equations: 
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The equations of mathematical model allow analyzing 
the transient states of C-LIM. As a result of the analysis 
the transient responses and trajectories for various real 
loads and various supply systems may be obtained. 
  
3. COMPUTATIONAL ANALYSIS 
 

Computational analysis of selected transient states 
of C-LIM was made using a mathematical model of 
C-LIM fed via frequency converter. Technical data 
and parameters of C-LIM constructed at Department 
of Electrical Machines and Drives at Faculty of 
Electrical Engineering at Technical University of 
Cz�stochowa are taken into consideration. 

Computational analysis is based on the system of 
equations (19). The system (19) includes equation of 
inductor electric circuit, equation of race electric circuit 
written in inductor terms and equation of motion. 
The formulas (16) that determine in general form 
components of three-phase supply voltage are taken 
into consideration. The system of equations describing 
operation of C-LIM in transient states was solved using 
own computational program written in language C. 

The following working conditions of C-LIM 
defined by load force Fo and frequency f of inverter 
voltage were considered in order to analyze 
computationally the C-LIM transient states: 
1. Starting the C-LIM at Fo = 0N, 100N, 200N and  
f = 30Hz, 40Hz, 50Hz, respectively. 
2. Reverse of the C-LIM at Fo = 0N, 100N, 200N 
and f = 30Hz, 40Hz, 50Hz, respectively. 

A self-load necessary to unbalance the inductor 
of C-LIM is assumed to be [3]. The self-load is 
equal to friction force of Ft = 23N. Examples of 
transient responses of started C-LIM using frequency 
converter are shown in Fig. 4 and 5, respectively. 
Examples of transient responses of reversed C-LIM 
using frequency converter are shown in Fig. 6 and 7. 

Selected parameters of transient force Fe = F(t), 
transient velocity v = v(t) and transient current i1 = i(t) 
of started motor at various frequencies of inverter 
voltage and various loads of the motor are presented 
in Table 1, where f is frequency of inverter voltage, 
Fo is load force, Femax is maximal amplitude of 
electromagnetic force, ∆Fe is amplitude of steady-
state oscillation of electromagnetic force, ts is time 
of stabilization of velocity, vs is steady-state velocity.  
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Fig. 4. Transient responses of started C-LIM using 
frequency converter at Fo = 0N and f = 50Hz,  

where Fe = F(t) is electromagnetic force, v = v(t)   
is linear velocity and i1 = i(t) is phase current 

 

 
 

Fig. 5. Transient responses of started C-LIM using 
frequency converter at Fo = 200N and f = 40Hz 

 
 

Fig. 6. Transient responses of reversed C-LIM using 
frequency converter at Fo = 100N and f = 50Hz 

 

 
 

Fig. 7. Transient responses of reversed C-LIM using 
frequency converter at Fo = 200N and f = 30Hz 
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Selected parameters of transient force Fe = F(t), 
transient velocity v = v(t) and transient current i1 = 
i(t) of reversed motor are presented in Table 2, 
where vr is steady-state velocity, tr is time of 
transition between steady-states velocities, t0 is time 
of immobilization of inductor. 
 
Tab. 1. Parameters of transient responses of started motor 

f Fo Femax ∆Fe ts vs Lp. 
[Hz] [N] [N] [N] [s] [m/s] 

1 2 3 4 5 6 7 
0 305 45 1,25 4,96 

100 375 170 2,20 4,62 
 

1. 50 
200 380 210 3,20 3,32 

0 300 40 0,98 3,96 
100 370 165 1,75 3,74 

 
2. 40 

200 390 215 2,50 3,04 
0 265 40 0,72 2,95 

100 330 165 1,42 2,73 
 

3. 30 
200 375 210 2,20 2,03 

 
Tab. 2. Parameters of transient responses of reversed motor 

f Fo Femax vr tr t0 Lp. 
[Hz] [N] [N] [m/s] [s] [s] 

1 2 3 4 5 6 7 
0 320 -4,96 2,00 0 

100 365 -4,62 2,85 0,30 
 

1. 50 
200 385 -3,38 4,62 0,53 

0 310 -3,96 1,30 0 
100 335 -3,74 2,20 0,29 

 
2. 40 

200 405 -3,04 3,25 0,52 
0 275 -2,96 1,10 0 

100 330 -2,73 1,96 0,26 
 

3. 30 
200 385 -2,03 2,75 0,48 

 
In Table 2, maximal amplitude of force Fe is an 
absolute value. Time of transition between steady-
states velocities is measured from positive to 
negative steady-state velocity whereas time of 
immobilization of inductor is measured as time of 
overlapping the transient velocity v = v(t) with level 
of v = 0. 
 
4. CONCLUSION 

Taking into consideration simulated transient 
states of started and reversed C-LIM as well as 
selected parameters presented in Table 1 and Table 2, 
it may be concluded that: 
- the maximal difference in oscillation of electro-
magnetic force Fe in comparison to steady-state 
oscillation appears during starting the non-loaded  
C-LIM (Fo = 0) independently of frequency of 
inverter voltage, 

- transient responses of C-LIM in the range of 
starting operation are similar to transient responses 
of rotary induction motor, 
- time of transition between steady-states velocities 
at given frequency of inverter voltage increases 
together with increase of load; a ratio of mass 
density of inductor together with suspension system 
to load force is a prime of importance; this topic was 
not of concern in this paper, 
- the oscillation of simulated transient phase current 
in inductor windings is minor during starting and 
reverse of the motor; thus, this oscillation was not 
studied in the paper, 
- time of immobilization of inductor during reverse 
of the motor increases together with increase of 
load; however, length of mentioned time is minor 
(below 1 second); it causes that this quantity is 
negligible in the range of usage of driving systems 
with application of C-LIM. 
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