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Abstract. The importance of nanoparticles in con-
trolling physical properties of polymeric nanocomposite
materials leads us to study effects of these nanoparticles
on electric and dielectric properties of polymers in in-
dustry In this research, the dielectric behaviour of High-
Density Polyethylene (HDPE) nanocomposites materi-
als that filled with nanoparticles of clay or fumed silica
has been investigated at various frequencies (10 Hz—
1 kHz) and temperatures (20-60 °C'). Dielectric spec-
troscopy has been used to characterize ionic conduc-
tion, then, the effects of nanoparticles concentration
on the dielectric losses and capacitive charge of the
new nanocomposites can be stated. Capacitive charge
and loss tangent in high density polyethylene nanocom-
posites are measured by dielectric spectroscopy. Differ-
ent dielectric behaviour has been observed depending on
type and concentration of nanoparticles under variant
thermal conditions.
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1. Introduction

Among the various types of polymeric dielectrics, High-
Density PolyEthylene (HDPE) has been standing out
as a raw material for the production of insulators, spac-
ers, and also as a coating for cable conductors used in
electrical power distribution networks. For this type of
application, the dielectric strength is one of the proper-
ties that must be taken into account in order to check
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the ability to withstand high electric fields. Dielectric
strength is defined as a relationship between the break-
down voltage and the dielectric thickness, representing
the maximum field which the material can support in-
definitely for a specific experimental setup. The use
of high purity polymers in engineering applications is
technologically not viable. This problem leads to the
development of formulations with additives in order to
protect the polymers against losses in their properties
(for example, mechanical and thermo-mechanical) dur-
ing the processing stages or in service. These additives
used in polymers for electrical insulation may or may
not harm the electric properties [, [2], [3], [4] and
[5]. Polymer composite, compared with conventional
sing-phase insulation, can improve dielectric proper-
ties. Non-linear conductivity in the insulating poly-
mer has been achieved by the introduction of inorganic
semi-conductor in particulate.

The polymer composite with field dependent conduc-
tivity can be used to improve the distribution of electric
field. For different application, the different composites
are used. For example, the silicon rubber and EPDM
filled with non-linear fillers are used as electric stress
grating materials in cable joints and terminations, and
the epoxy composites filled with carborundum (SiC)
are used for grating the electric field distribution at
the end of windings in electric machines. The polymer
composite filled with non-linear inorganic fillers, as one
kind of non-linear dielectrics, can be called "smart in-
sulating materials", due to the function of grading elec-
tric field and restraining the formation of space charge.
The properties of the non-linear materials are depen-
dent on the basic materials, and also dependent on the
fillers. In any engineering application, it is vital that
the selected materials exhibit an appropriate combina-
tion of properties throughout the design lifetime of the
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plant. For polymers, macroscopic properties are deter-
mined by two factors; microstructure and composition
6, [7, 8, [9] and [I0]. For example, the growth of
spherulites may lead to increase or decrease in electri-
cal breakdown strength, depending upon the precise
structure of these objects.

The composition of a polymeric material can be var-
ied in many ways, through the addition of antioxidant,
plasticizers, crosslinkers, fillers, etc. The addition of in-
organic filler to an elastomer will increase its stiffness,
albeit at the expense of reduced elongation at break
[10], [11], [12], [I3] and [I4]. As of now, work is under-
way to examine the physical properties of nanocompos-
ite materials composed of nanoparticles and their com-
pounds stabilized within a polymeric dielectric matrix.
In recent years polymer nanocomposites have attracted
wide interest with regard to enhancing polymer proper-
ties and extending their utility. It has been found that
the dielectric properties have a close relationship with
the interfacial behaviour between the fillers and the
polymer matrix in such composites. The electric and
optic properties of these materials have been demon-
strated to be highly dependent on the size, structure,
and concentration of the nanoparticles, as well as on

the type of polymeric matrix [15], [16], [I7], [I8] and

Great expectations have been focused on effects and
importance of costless nanoparticles [20], [21], [22],
23], [24], [25], [26], [27] and [28]. However, it has been
concerned in this paper about the effect of types of
costless nanoparticles on the electrical properties of a
polymeric nanocomposite. With a continual progress
in polymer nanocomposites, this research depicts the
effects of types and concentration of costless nanopar-
ticles in electrical properties of industrial polymer ma-
terial. All the experimental results of dielectric spec-
troscopy have been investigated and discussed to de-
tect all nanoparticles effects on electrical properties
of nanocomposite industrial material which fabricated;
like High Density PolyEthylene (HDPE) with various
nanoparticles of clay and fumed SiOs.

2. Experimental Setup

HIOKI 3522-50 LCR Hi-tester device measured elec-
trical parameters of nanocomposite solid dielectric in-
sulation specimens at various frequencies: |Z|,|Y],
O, Rp (DCR), Rs (ESR, DCR), G, X, B, Cp, Cs,
Lp, Ls, D (tan ¢), and Q. Specification of LCR
is Power supply: 100, 120, 220 or 240 V (£10 %)
AC (selectable), 50/60 Hz, Frequency: DC, 1 mHz to
100 kHz, Display Screen: LCD with backlight/99999
(full 5 digits), Basic Accuracy: Z : £0.08 % rdg.
O: £0.05 °, and External DC bias +£40 V max.(option)

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

(3522-50 used alone +10 V max./using 9268 +40 V
max.).

Finally, all dielectric properties for pure and
nanocomposite industrial materials can be measured
using HIOKI 3522-50 LCR Hi-tester device. Figure
shows HIOKI 3522-50 LCR Hi-tester device for mea-
suring characterization of nanocomposite insulation in-
dustrial materials.

Fig. 1: HIOKI 3522-50 LCR Hi-tester device.

3. Preparation of

Nanocomposites and
Characterization

The industrial materials studied here are high density
polyethylene which has been formulated utilizing vari-
ant concentrations of nanoparticles of clay and fumed
silica. High density polyethylene nanocomposites have
been prepared and fabricated by using recent nanotech-
nology procedures and devices for melting pure high
density polyethylene grains, mixing and penetrating
nanoparticles inside the base matrix HDPE by modern
ultrasonic devices. Most of all nanocomposite materi-
als are commercial and available already in the manu-
facturing of High-Voltage (HV) industrial products and
their properties detailed in Tab. [T}

Tab. 1: Electric and dielectric properties of pure and nanocom-
posite materials.

Dielectric Resistivity
Materials constant
at 1 kHz (wm)
Pure HDPE 2.3 10t
HDPE + 1 wt% clay 2.23 1016
HDPE + 5 wt% clay 1.99 1016 — 1019
HDPE + 10 wt% clay 1.76 1019 — 102!
HDPE + 1 wt% SiO» 2.32 1014
HDPE + 5 wt% SiO» 2.39 101 — 1012
HDPE + 10 wt% SiO2 2.49 1012 — 1010

SEM images illustrate penetration of nanoparticles
in polymeric nanocomposites; thus, Fig. [2] shows SEM
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(a) Clay/HDPE. (b) SiO5/HDPE.

Fig. 2: SEM images for high density polyethylene nanocompos-
ites.

images that illustrate the penetration of cost-fewer
nanoparticles in high density polyethylene nanocom-
posites. It has flakes like morphology with high sur-
face area. Also, it illustrates that the nanoparticles
are uniformly dispersed in the polymer matrix.

4. Results and Discussion

Dielectric Spectroscopy is a powerful experimental
method to investigate the dynamical behaviour of a
sample through the analysis of its frequency-dependent
dielectric response. This technique is based on the
measurement of the capacitance as a function of fre-
quency of a sample sandwiched between two electrodes.
The tan 0, and capacitance (C') was measured as a
function of frequency in the range 10 Hz to 50 kHz
at variant temperatures for all the test samples. The
measurements were made using high-resolution dielec-
tric spectroscopy.

4.1.  Effect of Nanoparticles at 20 °C
Figure [3] shows loss tangent as a function of frequency
for clay/HDPE nanocomposites at room temperature
(20 °C). This figure illustrates the loss tangent of
clay/HDPE nanocomposites increases with increasing
clay nanoparticles concentration up to 1 wt%, espe-
cially at low frequencies, but it decreases with increas-
ing clay nanoparticles concentration up to 10 wt%. In
addition, Fig. [4 shows loss tangent as a function of fre-
quency for (20 °C). The loss tangent of SiOo/HDPE
nanocomposites decreases with increasing fumed silica
concentration nanoparticles up to 1 wt%, especially at
high frequencies but it increases with increasing fumed
silica concentration nanoparticles (1-10 wt%).

Figure [5] shows capacitance as a function of fre-
quency for clay/HDPE nanocomposites at room tem-
perature (20 °C). It is clear that the measured capaci-
tance of clay/HDPE nanocomposites increases with in-
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Fig. 3: Measured loss tangent for clay/HDPE nanocomposites
at T'=20 °C.
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Fig. 4: Measured loss tangent for SiO2 /HDPE nanocomposites

at T = 20 °C.
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Fig. 5: Measured capacitance clay/HDPE nanocomposites at
T =20 °C.

creasing clay concentration nanoparticles up 10 wt%.
On the other hand, Fig. [f]shows capacitance as a func-
tion of frequency for SiOy/HDPE nanocomposites at
room temperature (20 °C). Furthermore, the measured
capacitance of SiOo/HDPE nanocomposites increases
with increasing fumed silica concentration nanoparti-
cles up to 5 wt% but it decreases with increasing fumed
silica concentration nanoparticles up to 10 wt%.
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Fig. 6: Measured capacitance SiO2/HDPE nanocomposites at
T =20°C.

4.2.  Effect of Nanoparticles on

HDPE Characterization at
40 °C

Figure [7] shows loss tangent as a function of fre-
quency for clay/HDPE nanocomposites at a tempera-
ture (40 °C). The loss tangent of clay/HDPE nanocom-
posites increases with increasing clay nanoparticles
concentration up to 10 wt%, especially at low frequen-
cies. Figure [§| shows loss tangent as a function of fre-
quency for SiOy/HDPE nanocomposites at a tempera-
ture (40 °C), the measured loss tangent of SiO5 /HDPE
nanocomposites increases with high fumed silica con-
centration nanoparticles up to 1 wt%, especially at
low frequencies. Noting that the loss tangent of
Si02/HDPE nanocomposites decreases with increasing
fumed silica concentration nanoparticles (1-10 wt%).
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Fig. 7: Measured loss tangent for clay/ HDPE nanocomposites
at T'=40 °C.

Figure [9] shows capacitance as a function of fre-
quency for clay/HDPE nanocomposites at a tempera-
ture (40 °C). The measured capacitance of clay/HDPE
nanocomposites decreases with increasing clay concen-
tration nanoparticles. Similarly, Fig. shows the
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measured capacitance of SiOs/HDPE nanocomposites
decreases with increasing fumed silica concentration
nanoparticles capacitance as a function of frequency
at a temperature (40 °C).
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Fig. 8: Measured loss tangent for SiO2/HDPE nanocomposites

at T'=40 °C.
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Fig. 9: Measured capacitance for clay/HDPE nanocomposites
at T'=40 °C.
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Fig. 10: Measured capacitance for SiO2/HDPE nanocompos-
ites at T'= 40 °C.
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4.3. Effect of Nanoparticles at 60 °C
Figure [TI] shows loss tangent as a function of fre-
quency for clay/HDPE nanocomposites at a tempera-
ture (60 °C). The loss tangent of clay/HDPE nanocom-
posites decreases with high clay nanoparticles concen-
tration up to 10 wt%, especially at low frequencies. On
the other hand, Fig. shows loss tangent as a func-
tion of frequency for SiOy /HDPE nanocomposites at a
temperature (60 °C), moreover, it is noticed that the
loss tangent of SiO2/HDPE nanocomposites decreases
with high fumed silica concentration nanoparticles up
to 10 wt%, specially, at low frequencies.
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Fig. 11: Measured loss tangent for clay/HDPE nanocomposites

at T'= 60 °C.
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Fig. 12: Measured loss tangent for SiO2/HDPE nanocompos-
ites at T' = 60 °C.

Figure [I3] shows capacitance as a function of fre-
quency for clay/HDPE nanocomposites at a tempera-
ture (60 °C). It illustrates the measured capacitance of
clay/HDPE nanocomposites increases with increasing
clay concentration nanoparticles up to 10 wt%. On the
other hand, Fig. [[4] shows capacitance as a function of
frequency for SiOo/HDPE nanocomposites at a tem-
perature (60 °C). Moreover, it is illustrated that the
capacitance of SiO3/HDPE nanocomposites increases
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Fig. 13: Measured capacitance for clay/HDPE nanocomposites
at T =60 °C.

with high fumed silica concentration nanoparticles up
to 1 wt%, in addition, it decreases with the growth of
fumed silica concentration nanoparticles (5-10 wt%).
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Fig. 14: Measured capacitance for SiO2/HDPE nanocompos-
ites at T' =60 °C.

4.4. Trends of Nanoparticles under

Thermal Conditions

All depicted results have cleared that adding fumed sil-
ica increases permittivity of High density polyethylene
insulation materials; furthermore, adding clay has de-
creases permittivity of High density polyethylene insu-
lation materials as shown in Tab.[I] Physical interface
between high density polyethylene and nanoparticles
has been affected on capacitance and dielectric loss an-
gle curves under normal thermal conditions (20 °C)
that are pointed out in (Fig. [3| Fig. [i] Fig. 5] Fig. [).
Therefore, the loss tangent of clay/HDPE nanocom-
posites increases with increasing clay nanoparticles
concentration up to 1 wt%, specially, at low frequencies
but it decreases with the raise of clay nanoparticles con-
centration up to 10 wt%. Moreover, the loss tangent of
SiO5 /HDPE nanocomposites decreases with fumed sil-
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ica concentration nanoparticles raised up to 1 wt%, es-
pecially, in case of high frequencies but it increases with
increasing fumed silica concentration nanoparticles (1-
10 wt%). The measured capacitance of clay/HDPE
nanocomposites increases with increasing clay concen-
tration nanoparticles up to 10 wt%.Furthermore, the
measured capacitance of SiOy/HDPE nanocomposites
increases with increasing fumed silica concentration
nanoparticles up to 5 wt% but it decreases with in-
creasing fumed silica concentration nanoparticles up to
10 wt%.

Changing thermal conditions can be affected by
physical interface between high density polyethylene
and nanoparticles and so will be affected by capaci-
tance and dielectric loss angle curves as pointed out
in (Fig. [ Fig. Fig. [0 and Fig. for high
thermal condition (40 °C)Thus, the loss tangent of
clay/HDPE nanocomposites increases with increasing
clay nanoparticles concentration up to 10 wt%, spe-
cially, at low frequencies. Moreover, the measured loss
tangent of SiO,/HDPE nanocomposites increases with
increasing fumed silica concentration nanoparticles up
to 1 wt%. Noting that the loss tangent of SiO5/HDPE
nanocomposites decreases with the higher concentra-
tion of fumed silica nanoparticles(1-10 wt%). Also,
the measured capacitance of clay/HDPE nanocom-
posites decreases with the addition of clay concen-
tration nanoparticles up to 10 wt%. It is clear that
the measured capacitance of SiOs /HDPE nanocompos-
ites raises with the concentration of the fumed silica
nanoparticles up to 1 wt% and also increases with the
addition of fumed silica concentration nanoparticles up
to 10 wt%.

Finally, the effect of raising thermal conditions up
to (60 °C) on physical interface between high den-
sity polyethylene and nanoparticles is pointed out in
(Fig. Fig. Fig. |13 and Fig. where loss tan-
gent and capacitance of new nanocomposite materials
are reported for different concentration weights of mod-
ified nanoparticles concentration at (60 °C) tempera-
ture. Thus, the loss tangent of clay/HDPE nanocom-
posites decreases with clay nanoparticles concentra-
tion raised up to 10 wt%, especially in case of low
frequencies. It is noticed that the loss tangent of
SiO2/HDPE nanocomposites decreases with fumed sil-
ica concentration nanoparticles up to 10 wt%, espe-
cially in case of low frequencies. The measured capaci-
tance of clay/HDPE nanocomposites increases with the
addition of the clay nanoparticles concentration up to
10 wt%. The capacitance of SiO2/HDPE nanocompos-
ites increases with fumed silica concentration nanopar-
ticles increased up to 1 wt% but it decreases with the
addition of fumed silica nanoparticles (5-10 wt%).
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5. Conclusion

Adding fumed silica has increased permittivity of the
new high density polyethylene nanocomposite materi-
als, but adding clay has decreased permittivity of the
new high density polyethylene nanocomposite materi-
als.

Nanoparticles can be controlled in the loss tan-
gent, and capacitance of new high density polyethylene
nanocomposites depend on type and concentration of
nanoparticles in nanocomposites according to physical
interface that created between high density polyethy-
lene and nanoparticles.

Thermal environment is an effective parameter for
increasing and decreasing the loss tangent and capaci-
tance of new high density polyethylene nanocomposites
with respect to the type and concentration of nanopar-
ticles. Thermal environment conditions are affected
by physical interface created between high density
polyethylene and nanoparticles because clay nanopar-
ticles are more efficient than fumed silica nanoparticles
for decreasing charging capacitance and loss tangent
performance under room thermal conditions. However,
under the high thermal conditions, the performance
of charging capacitance and loss tangent are changed
gradually.
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