INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

SOFTWARE IMPLEMENTATION OF A SECURE FIRMWARE
UPDATE SOLUTION IN AN IOT CONTEXT

Lukas KVARDA', Pavel HNYK"', Lukas VOJTECH', Zdeneck LOKAJ?,
Marek NERUDA', Tomas ZITTA*

!Department of Telecommunication Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
2Departmentf of Applied Informatics in Transportation, Faculty of Transportation Sciences,
Czech Technical University in Prague, Konviktska 20, 110 00 Prague, Czech Republic

kvardluk@fel.cvut.cz, hnykpavl@fel.cvut.cz, vojtecl@fel.cvut.cz, lokaj@fd.cvut.cz, nerudmar@fel.cvut.cz

DOLI: 10.15598/aeee.v14i4.1858

Abstract. The paper presents the secure delivery of
firmware updates to Internet of Things (IoT) devices.
Additionally, it deals with the design of a safe and se-
cure bootloader for an Ultra High Frequency Radiofre-
quency Identification (UHF RFID) reader. A software
implementation of a secure firmware update solution is
performed. The results show the implementation of the
Advanced Encryption Standard (AES) encryption into
existing IoT devices, e.g. UHF RFID reader, requires
at least 49.7 kB of flash memory and 10 kB of RAM,
and therefore there is space to integrate even more se-
curity features into existing devices without hardware
upgrade.

Keywords

Firmware, IoT, security.

1. Introduction

The Internet of Things (IoT) has become an impor-
tant phenomenon due to the rapid pace of technolog-
ical development. There is a constant stream of new
smart devices to the market, including smartphones,
smartwatches, smart refrigerators and many more. If
this pace continues, IoT technology is soon adopted
by many other industries including mobility, home au-
tomation, connected life and energy.

The main idea behind this trend is to connect things
(sensors, actuators, lights, refrigerators, etc.) to exist-
ing network infrastructure [I] and [2]. The producers
of IoT devices capitalise on the enthusiastic acceptance
of this new technology by consumers and accelerate

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

the production processes to shorten the time to mar-
ket. The rapid pace of development has implications
for the final quality of the devices which often break
down due to Firmware (FW) or Software (SW) defects
[3]. In a continuous development environment, FW
has to be frequently updated for several reasons. The
first one is the need to fix FW and SW bugs after the
product has been released to market. Another reason
is the addition of a new feature to a product that is
already being used. A third reason, which is proba-
bly the most important, is the need to protect the de-
vices against cyber-attacks. It can be for instance an
attempt to manipulate an automated driving system
which is a modification of the time parameter when
the car starts to brake. If a default value 0.01 s is
changed by an attacker to 1.1 s, a major collision can
occur. Another example is a sophisticated sensor mod-
ification attack involving a change to the FW which
affects the sensing parameters. These attacks are very
dangerous because they can be undetected if no deeper
analysis is done. Therefore, more attention has to be
paid to these threats.

Updating FW remotely saves money and time be-
cause the customer does not need to send the device
to the producer every time an update is needed. Gart-
ner [4] predicts that approximately 20.8 billion of such
devices will be in use by 2020.

The disadvantage, which we have hinted at, is the
vulnerability to attacks targeting the update process
when security is underestimated.

The rest of the paper is organized as follows: Section|

describes recent update solutions, Section
presents safety and security issues, Section [4.] deals

with implementation details, Section describes

389

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

measurement and results. Conclusion is presented in

Section [6.]

2. Today’s Update Solutions

We distinguish several types of IoT devices based on
applications, and each of these types requires a specific
FW update solution. For example, Jurkovic and Sruk
[5] deal with the question of using the Internet to con-
duct private experiments remotely — Remote Labora-
tories (RLs). These experiments take into account re-
mote access including FW update of experimental test
fixtures. To access the Raspberry Pi from the Internet,
a Transport Layer Security (TLS) cryptographic proto-
col with a unique certificate and a server and client key
is proposed. Another way to deliver updates is via an
existing mobile network, as described in [6] where the
update solution consists of GPRS modules connected
on one side to a PC and on the other side to the device
to be updated. The same technology is used in the
solution proposed in [7], except that instead of GPRS
modules, two inexpensive GPRS-enabled phones are
used. The update solution consists of a controller (a
PC) and a remote standalone unit which contains the
8-bit microprocessor to be updated. A drawback of
these systems is that the speed decreases logarithmi-
cally with increasing distance from a GSM transmitter.
Paper [8] deals with the secure delivery of FW updates
to devices connected to a home network. The pro-
posed network architecture consists of two basic nodes,
a FW manager and a server. The firmware installed on
the individual devices is managed by the FW manager
which is stored in the home gateway and which can
be connected to the Internet. The FW manager also
provides FW data to the server which takes care of
the uploaded FW from producers and provides it to
the FW manager. The FW manager relies on hash
chains to verify the integrity and authenticity of the
image file. To encrypt the FW image file, a session key
is generated using identity-based cryptography and bi-
linear pairing technology. The most vulnerable spot
in this model is found between the FW manager and
the device when using wireless technology to transmit
data. Zaware and Shinde [9] proposed an implementa-
tion of the remote control and update of devices over
Wi-Fi from any device (PC, tablet, mobile phone). To
secure the communication channel, Wired Equivalent
Privacy (WEP) encryption is used. This can, however,
be easily broken, so Wi-Fi Protected Access (WPA) or
WPAZ2 encryption is a better solution. As this solution
does not address the need to secure the content that
is transmitted (i.e., a FW image file), it is not suit-
able for the remote update of FW. Another method of
updating IoT devices remotely is proposed in [10]. It
relies on the use of a smartphone with Bluetooth con-
nectivity. Field-Programmable Gate Arrays (FPGAs)

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

can also be updated remotely [I], although given the
price and the overall complexity of the Hardware (HW)
and SW design as compared to single-chip processors,
this is not often demanded.

As it is clear from the differences between the meth-
ods described above, none of the solutions can be con-
sidered perfect. Instead, we need to select the most ap-
propriate method for each specific configuration of de-
vices, taking into consideration the required level of se-
curity, memory size, computing power and power sup-
ply, while reflecting the need to protect assets, main-
tain asset value and ensure the desired quality of ser-
vice.

3. Safety and Security

In the last few years we have seen an increase in the
number of attacks targeting the FW of IoT systems
as opposed to the operating system or the applications
themselves, as neither antivirus software nor the op-
erating system can detect low-level FW modification
attacks. The attacks are also motivated by the fact
that FW can contain code, data, calibration values,
shared secrets and other important information. Up-
dating FW remotely is an ideal solution for the distri-
bution of security patches which eliminate weak spots
detected in previous FW versions.

3.1. Security Threats to In-field

Firmware Updates

When a FW image file is transmitted over an insecure
channel and stored on a device, security issues may oc-
cur. Figure[I]shows a typical in-field firmware update
process, broken into three sections based on location of
an attack.

Customer Manufacturer

Untrusted area
New New
Firmware Firmware
NFI Image (NFI) Image (NFI)

IoT Device

Untrusted area

New
Firmware
Image (NFI)

Remote Update

- Reverse-engineering
- Firmware alteration

-HW Attack - Reverse-engineering

- Firmware alteration

+
- Third-party firmware
- Unauthorized device
- Purpose update cancelation

Fig. 1: In-field firmware update process (adapted from [12]).

Manufacturer — Customer — the manufacturer
produces a new version of the FW image file (NFI)
and distributes it over an untrusted network (i.e., the
Internet) to the customer. The communication may be
eavesdropped; an attacker takes hold of the entire FW
image file which can then be reverse-engineered and

390

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

sensitive information can be extracted from it. The
file can also be modified and returned to distribution.

Customer — IoT device — an update is distributed
over an untrusted network, so eavesdropping is also
possible. Unlike the NFI, additional risks such as the
risk of loading unauthorised FW, the risk of loading
FW onto unauthorised devices or the risk of intentional
abortion of the update process can occur. Therefore,
attacks are most likely to happen precisely in this sec-
tion.

IoT device — an attack targeting the FW update
process may involve the HW device itself. Such an at-
tack is possible only when the device is in physical pos-
session of the attacker. Additionally, the attacker must
have access to laboratory equipment such as an elec-
tron microscope or a scanning probe microscope. Us-
ing this equipment, the attacker can monitor analogue
buses, read data directly from microprocessor memory
or use electromagnetic radiation to launch cryptanal-
ysis attacks. Such attacks are very complex compared
to what can be gained by them. This paper does not
deal with these attacks.

3.2. Safety and Security Measure
Measures to ensure protection against the threats men-
tioned above fall into two categories based on what
they address: safety and security.

1) Safety Measures

These methods operate at the protocol level and are
aimed at preventing other types of attacks not elimi-
nated by security measures. For example, these mea-
sures can protect the IoT environment against the
aforementioned attacks which target the FW update
process and which can cause the FW image file to
become corrupted, truncated or incomplete. If a cor-
rupted FW image file is loaded onto a device, the device
can have a failure. There may also be damages to as-
sets or even fatalities. To detect attacks, methods such
as the following can be used:

e error detection and correction Cyclic Redundancy
Check (CRC),

e block ciphers,

e packet acknowledgement.
These methods, however, cannot eliminate the
threats, so they have to be combined with memory

partitioning:

e single Banked Partitioning (SBP),

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

e dual Banked Partitioning (DBP).

The idea of SBP and DBP is that during the update
process, a copy of a working FW version is stored in
the Microcontroller Unit (MCU). If only a portion of
the packets is transferred (e.g. due to an intentional
abortion of the FW update process), the current FW is
not overwritten with the corrupt FW image file. This
means that two FW image files (the original and the
updated version) have to be stored in the MCU at the
same time. This requires additional processor memory,
which results in higher cost.

2) Security Measures

In order to secure the FW update process, data confi-
dentiality, authenticity and integrity must be ensured
in addition to transmission security.

Integrity — the image file generated by the manufac-
turer has not been tampered with before this image file
is received by the device. To detect attacks, methods
such as the following can be used:

e Hash function — a fingerprint of an FW image file is
obtained using a hash function. The fingerprint is
attached to the data transmitted. Once the boot-
loader received all the data, it computes its own
fingerprint and compares it with the one received.
If the two are equal, the FW is not modified. A
downside of using simple FW hashes is that an at-
tacker can modify the file and subsequently com-
pute a fingerprint. In this case, the bootloader is
not able to detect that the FW has been manipu-
lated.

e Digital signature — a FW fingerprint is computed
first, then encrypted using a private key (asym-
metric encryption). The signature thus obtained
is attached to the FW image file and sent to the
device. The bootloader decrypts the digital signa-
ture using a public key and performs a comparison
as when using a hash function.

e Message Authentication Codes (MACs) — these
are similar to digital signatures except a private
key is used to encrypt and decrypt the fingerprint
(symmetric encryption). A disadvantage of MACs
as compared to digital signatures is that as anyone
can verify a MAC, anyone can create one.

Authentication — refers to the verification of the
origin of a message. It checks that both the FW im-
age file and the target device originate from the man-
ufacturer. The MAC and digital signature methods
do permit this because by successfully deciphering the
fingerprint, they confirm that the source is authorised.

391

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

Tab. 1: Asymmetric and symmetric encryption compared.

Symmetric

Asymmetric

Key type Private

Private, public

Key generation

Simple (randomly generated)

Complicated (special structure, expensive)

Key distribution | Difficult Easy
Time to process Shorter Longer
Implementation Easy Complicated

Privacy — in the case of a remote FW update pro-
cess this safety attribute helps to keep the FW image
file confidential and prevent from unauthorised read-
ing and the application of reverse engineering. The
data is protected by encrypting the FW image file us-
ing a predetermined symmetric-key algorithm or, al-
ternatively, asymmetric key encryption. Both types
of encryption are used to ensure data confidentiality
along with methods ensuring data integrity or authen-
tication. A basic overview of these is depicted in Tab. [I]

Although the content of the FW image file is un-
known to the attacker, a real threat is FW malicious
modifications. The attacker might find the location of
the requested variable and achieve the desired results
in further iterative attempts. Such an attack is indeed
very difficult to implement, but not impossible. For
this reason, encryption is often combined with MACs.

4. Implementation Details

As mentioned earlier, security features have to be im-
plemented into IoT devices. The bootloader of the cur-
rent Intelligent UHF RFID reader does not have any.
We decided to add secure bootloader functionality to
the device. There are essentially two options: software
or hardware. The advantages of a HW implementation
include:

e support for various encryption methods (AES,
Data Encryption Standard (DES) and 3DES)
without CPU intervention,

e lower computing time (only a few hundred cycles
per block as opposed to several thousand cycles in
SW),

e support for a One-Time Programmable (OTP) ar-
ray for secure key storage,

e on-chip Random Number Generator (RNG),

e lower power consumption — operates at lower CPU
frequency.

As the design is not new but is a finished device, we
have focused on a SW security solution for its lower
cost (no changes to board layout, no need for a new
MCU, ease of implementation). An implementation of

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

Image file encryption, i.e. a PC application is devel-
oped in order to encrypt the firmware image file, Fig.
and Device flash, i.e. a PC application is developed in
order to load the firmware image file onto the device,
Fig. 3] is performed in order to flash the device with
an encrypted firmware image file. The application of
Image file encryption can generate an AES encrypted
image file with configurable key length. The user only
selects an unencrypted firmware image file and fills in
the encryption key and initialisation vector. The ap-
plication of Device flash sends the image to the device
over UDP with a custom service protocol.

EUREKAcrypt vD.1

Encryption

B 2Es-128

Encryptor

Hex File: | Path to file to encrypt

Fig. 2: A PC application to encrypt the firmware image file.

EUREKAupgrader v0.3
Connection

192.168.1.17

Fig. 3: A PC application to flash the device with a new firmware
image file.

In the present version, an AES-based system in Ci-
pher Block Chaining (CBC) mode with configurable
key length for testing purposes is used. This is suffi-
cient for the current application, but an AES Counter

392

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

with CBC-MAC (CCM) implementation may be ex-
plored in the future to ensure integrity and authen-
ticity. An implementation of a secure bootloader is

developed for the existing hardware-based Inteligent
UHF RFID Reader.

4.1. AutoEPCIS UHF RFID Reader

The reader is equipped with 4 antenna ports (SMA
connectors); each port can deliver a maximum output
of 29 dBm, Fig.[d] The reader can be powered through
a DC connector (5 V) or via PoE (48 V). The reader
has an Ethernet module and RS232 interface which is
integrated into a GPIO connector. The reader sup-
ports low-level reader protocol (LLRP) and a custom
protocol via UDP and the RS232 interface.

The core of the reader consists of a
PIC32MX340F512H microprocessor, which con-
trols the RFID chip, a W5500 chip for Ethernet
connectivity, which is considered to be unattackable
[13] and other peripherals. The MCU operates at
80 MHz, has a 512 kB flash memory and a 32 kB
RAM; there is no external memory.

Fig. 4: AutoEPCIS UHF RFID reader — the view from above.

4.2, The Old Bootloader

The old version of the bootloader does not provide any
security features. A firmware image file takes up over
half of the flash memory, preventing the use of SBP
whereby the memory is divided into two partitions,
one being used by the existing firmware and the other
(Buffer zone) by the new firmware. Without SBP, a
new firmware version is loaded directly onto the device.
If an error occurred during the load process, there is
no way of reverting to the original firmware version.
The bootloader has a 34 kB flash memory and takes
up 5.65 kB of RAM. The firmware takes up 275 kB of
flash memory and 19 kB of RAM.

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

4.3. The Redesigned Bootloader

In the new version of the firmware, the web server is
removed and the reader is controlled only via LLRP.
This results in a much lighter version of the firmware
which permits the use of the SBP method.

The implementation of AES encryption is based on
the library written by Brad Conte [I4]. It is chosen for
two reasons, one being easy implementation and the
other being freedom from use restrictions as the im-
plementation is released into the public domain. An
automatic encryption detection algorithm for testing
purposes is also developed. The PC application can
send various encrypted image files without letting the
device know the key length selected to encrypt the im-
age. As a result, the device can be flashed with one
command only (DATA flash).

We use our own protocol to send encrypted data to
the device; the same protocol is used to control the
RFID reader. Encrypted data is sent to the device via
UDP, the device checks if there is a DATA flash com-
mand in the protocol header — if yes, incoming packet
is decrypted and saved to a temporary flash storage
area. Once the entire incoming image file is success-
fully saved to the temporary flash storage area, a con-
sistency check is run; CRC-16 is used to verify this ac-
tion. If an error occurs during the flash procedure, the
device reports the error to the host based on a defined
error code chart and the flash procedure has to start
over. The host can choose to stop the flash procedure
at any time; the device reverts to the last successfully
flashed firmware version.

The memory utilisation of the working version of the
FW is reduced to 151 kB of flash memory and 16.38
kB of RAM. The bootloader takes up 49.7 kB of flash
memory and 9.95 kB RAM.

Flash start \
A4
. NO
Encryption detector » Wrong key
YES

N YES

Continue to read Error or -
incoming data user interrupt
NO

\J
Decrypt and save NO
incoming data until > Verification >

transmission complete o o) e

Apply new firmware

» End <« Errorreport =

Fig. 5: Device flash diag.

393

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

4.4. Keys Management

As we use symmetric encryption (AES CBC), the same
key has to be available to both the bootloader and
the encryption application on the PC, Fig. In the
present implementation, the key is stored in the boot-
loader flash memory space and a code-protect mode
is used to prevent unauthorised readout. Additionally,
the JTAG and debug interfaces are disabled. The key
cannot be modified in any other way than by rewriting
the bootloader with a new key using a PICkit program-
mer. We are aware that this solution is less than ideal
and the key should be stored on secure HW; however,
the proposed solution of storing the key is sufficient
considering the value of the assets. Using a PICkit
programmer, the device can only be erased (the boot
and program flash memory cannot be read or modified
until the device is completely erased).

5. Measurements and Results

A test bench is designed to validate the functional-
ity of the bootloader and the bootloader with a FW
image file encryption capability based on an existing
AutoEPCIS UHF RFID reader v.2. It consists of an
update terminal, the IoT device to be updated and
a router (Mikrotik RB2011UiAS-2HnD-IN). A desk-
top PC is used as the update terminal: it encrypts
the FW image file and sends it to the device through
the router. A USB-UART adapter for debugging, an
Ethernet cable for data communication and a PICkit
3 programmer for the initial upload of the bootloader
to the MCU are also needed. These components are
shown in detail in Fig. [f] Both the bootloader and
the firmware are coded in the MPLABX IDE v3.30
environment, by Microchip Technology Inc. The com-
piler MPLAB XC32 v1.34 is used. The PC application
which can flash the device with a new firmware image
file, Fig. 8] and the application which can encrypt the
firmware image, Fig.[2] is developed in QTcreator 3.3.1
(open source).

Fig. 6: Test bench — details of the RFID reader connection.

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

We compared the RAM and flash memory utilisation
of the bootloader with and without encryption, Fig. [7]
The microprocessor has an additional 12 kB of flash
memory. The memory utilisation of the bootloader is
almost three times higher than of the flash MCU boot.
This is due to the large library for the W5500 chip
which is needed for communication over Ethernet. We
deal with this problem by remapping the bootloader
starting address as shown in [I5]. The bootloader is
placed at the end of the flash memory space, as this is
easier to implement and there is no need for a special
compiler configuration. Considering the size of the cur-
rent program (151 kB) and the total size of the flash
memory (512 kB), we opted for a 100 kB bootloader.
The memory is twice bigger than necessary to allow for
future extension. There is also sufficient memory for
future FW development (261 kB).

FwW

FW+BTL

w
rS

FW+BTL+encrypt

Available Flash 512

0 80 160 240 320 400 480
Flash Size (kB)

Fig. 7: Flash memory utilisation by bootloader type.

Figure [§] shows RAM utilisation by bootloader type.
The added bootloader uses 5.65 kB of RAM, while the
bootloader with the encryption capability uses 10 kB
of RAM. The difference between encryption and no en-
cryption is 4.3 kB of RAM.

FW
BTL
BTL+encrypt

Available RAM 32

0 2 6 10 14 18 22 26 30
RAM Size (kB)

Fig. 8: RAM utilisation based on bootloader type.

Next, the time it takes to flash the device when us-
ing different encryption methods is measured. The
firmware image file has a size of 433 kB. As can be
seen in Fig. [0 it takes almost twice as long to flash the
device when using the AES-128 encryption method as
when using no encryption. In fact, AES-128 is suffi-
cient method for the IoT devices. Nevertheless, the
comparison is also performed for AES-192 and AES-
256.

394

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

No Encryption

AES 128-Bit

AES 192-Bit

AES 256-Bit

0 2500

5000
Time to flash device (ms)

7500 10000

Fig. 9: Flash time by encryption method.

6. Conclusion

The paper describes a software implementation of a se-
cure firmware update solution in an IoT context. Our
goal is to find out whether it would be possible to in-
tegrate security features such as AES into existing de-
vices. We have concluded that this is possible and the
experimental data indicates that there is space to in-
tegrate even more security features. There is no need
to purchase a more powerful processor in the future.

The measurements indicate that the minimum pro-
cessor memory requirements are: 49.7 kB of flash mem-
ory and 10 kB of RAM. When using AES encryption
with a 256-bit key, the time to load the firmware in-
creases twofold. As the devices only need to be updated
once in a while, speed is not critical. Having imple-
mented a SW solution only, it may be interesting to
try a HW solution in the future and do a cost-benefit
analysis. We would also like to conduct experiments
with OTP to evaluate the safety claims of the producer.
Whether we extend the functionality of the firmware or
use dual banked partitioning for firmware backup, an
external memory will have to be integrated into the
device. We would like to experiment with other cryp-
tographic techniques such as AES with CCM (Counter
with CBC-MAC), RSA and integrity verification meth-
ods.

Acknowledgment

This paper is supported by the grant no.
SGS16/159/0OHK3/2T/13 and by the grant in
EUREKA Cluster program with EUREKA7592
AutoEPCIS project.

References

[1] KOLAROVSZKI, P. and V. DUBRAVKA. The
presentation of production line and warehouse
management based on RFID technology through
3D modelling and animation. Transport and

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

2]

13l

4]

[5]

[6]

7]

18]

19]

telecommunication. 2010, vol. 11, iss. 3, pp. 26—
36. ISSN 1407-6160.

KEBO, V., P. STASA, F. BENES and J. SVUB.
Auto-identification in mining industry. Inzynieria
Mineralna. 2015, vol. 16, iss. 1, pp. 7-12.
ISSN 1640-4920.

VACULIK J., P. KOLAROVSYKI and J. TEN-
GLER. Possibility of RFID in conditions of
postal operators. In: Radio frequency identifi-
cation from system to applications. Rijeka: In-
Tech, 2015, pp. 7-12. ISBN 978-953-51-1143-6.
DOI: |10.5772/46210.

Gartner Says 6.4 Billion Connected
“Things” Will Be in Use in 2016.
Gartner [online]. 2015. Available

at: |http://www.gartner.com/newsroom/
1d/3165317.

JURKOVIC, G. and V. SRUK. Remote firmware
update for constrained embedded systems. In:
2014 37th International Convention on Informa-
tion and Communication Technology, Electronics
and Microelectronics (MIPRO). Opatija: IEEE,
2014, pp. 1019-1023. ISBN 978-953-233-077-9.
DOI: |10.1109/MIPRO.2014.6859718.

YANG, M. and F. ZHU. The Design of Re-
mote Update System Based on GPRS Tech-
nology. In: 2010 International Conference
on Management and Service Science. Wuhan:
IEEE, 2010, pp. 1-4. ISBN 978-1-4244-5325-2.
DOI: 10.1109/ICMSS.2010.5575699

DALAI, S., B. CHATTERJEE, D. DEY, S.
CHAKRAVORTI and K. BHATTACHARYA. Mi-
crocontroller based remote updating system us-
ing voice channel of cellular network. In: 2015
IEEE Power, Communication and Information
Technology Conference (PC-ITC). Bhubaneswar:
IEEE, 2015, pp. 11-16. ISBN 978-1-4799-7455-9.
DOI: |10.1109/PCITC.2015.7438154.

CHOI, B. C., S. H. LEE, J. C. NA and J.
H. LEE Secure firmware validation and up-
date for consumer devices in home network-
ing. IEFEE Transactions on Consumer Electron-
ics. 2016, vol. 62, iss. 1, pp. 39-44. ISSN 0098-
3063. DOI: 10.1109/TCE.2016.7448561.

ZAWARE, P. G. and S. V. SHINDE. Wireless
monitoring, controlling and firmware upgradation
of embedded devices using Wi-Fi. In: 2014 In-
ternational Conference on Advances in Communi-
cation and Computing Technologies (ICA-CACT
2014). Mumbai: IEEE, 2014, pp. 1-6. ISBN 978-
1-4799-7318-7. DOI: 10.1109/EIC.2015.7230742.

395

http://dx.doi.org/ 10.5772/46210
 http://www.gartner.com/newsroom/id/3165317
 http://www.gartner.com/newsroom/id/3165317
http://dx.doi.org/10.1109/MIPRO.2014.6859718
http://dx.doi.org/10.1109/ICMSS.2010.5575699
http://dx.doi.org/ 10.1109/PCITC.2015.7438154
http://dx.doi.org/10.1109/TCE.2016.7448561
http://dx.doi.org/10.1109/EIC.2015.7230742

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 14 | NUMBER: 4 | 2016 | SPECIAL ISSUE

[10] HONG, S. G., N. S. KIM and T. HEO. A smart-
phone connected software updating framework
for ToT devices. In: 2015 International Sympo-
sium on Consumer Electronics (ISCE). Madrid:
IEEE, 2015, pp. 1-2. ISBN 978-1-4673-7365-4.
DOI: 10.1109/ISCE.2015.7177805.

[11] THANH, T., T. H. VU, N. V. CUONG and P.
N. NAM. A protocol for secure remote update
of run-time partially reconfigurable systems based
on FPGA. In: 2013 International Conference on
Control, Automation and Information Sciences
(ICCAIS). Nha Trang: IEEE, 2013, pp. 295-299.
ISBN 978-1-4799-0572-0. DOI: |10.1109/ICCAIS.

2013.6720571L

Atmel AT02333: Safe and Secure Bootloader Im-
plementation for SAM3/4. Atmel [online]. 2015.
Available at: http://www.atmel . com.

[12]

[13] Brad Conte Computing, math, and other hobbies:
Implementation of AES in C. Bradconte |online].
2006. Available at: http://bradconte.com/

aes_C.

[14] Un-Attackable (Non-Breakable) of W7500 and
W5500. SOS Electronic [online]. 2015. Available

at: http://wiznetmuseum. com.

[15] XueMing. Designing bootloader for Mi-
crochip dsPIC33E/PIC24E micro-controller.
Microchip [online]. 2016. Available

at: https://zavax.wordpress.com.

About Authors

Lukas KVARDA was born in Jilemnice, Czech
Republic in 1986. He earned his M.Sc. degree in Elec-
trical Engineering from the Czech Technical University
in Prague in 2013. His research interests include HW
and SW design, RFID technology and cryptography.

(© 2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

Pavel HNYK was born in Jilemnice, Czech Republic
in 1987. He earned his M.Sc. degree in Electrical
Engineering from the Czech Technical University in
Prague in 2013. His research interests include HW
and SW design, RFID technology and cryptography.

Lukas VOJTECH received M.Sc. and Ph.D.
at Telecommunication Engineering at the Czech
Technical University in Prague, Czech Republic in
2003 and 2010. He has been actively involved in
several national and international projects. He is a
leader of RFID laboratory at the Czech Technical
University in Prague since 2010. His research interests
are hardware prototyping and measurement especially
in the field of RFID technology, textile antenna design
and localization.

Zdenek LOKAJ received M.Sc. and Ph.D. at
Engineering Informatics at Faculty of Transportation
Sciences of Czech Technical University in Prague,
Czech Republic in 2005 and 2011. In 2015 he achieved
Associate Professor grade. His research interests are
system design and integration mainly in ITS area,
IT security and telecommunications solutions for
intelligent transport systems.

Marek NERUDA received the M.Sc. and Ph.D.
degree in Electrical Engineering from the Czech
Technical University in Prague, Faculty of Electrical
Engineering, Czech Republic in 2007 and in 2014,
respectively. His research interests include RFID tech-
nology and electrically conductive textile materials.

Tomas ZITTA is a Ph.D. student of a study
program at Telecommunication Engineering at the
Czech Technical University in Prague, Czech Republic.
He is focused on mobile application development and
security in IoT ecosystem.

396

http://dx.doi.org/10.1109/ISCE.2015.7177805
http://dx.doi.org/10.1109/ICCAIS.2013.6720571
http://dx.doi.org/10.1109/ICCAIS.2013.6720571
http://www.atmel.com/images/atmel-42141-sam-at02333-safe-and-secure-bootloader-implementation-for-sam3-4_application-note.pdf
http://bradconte.com/aes_c
http://bradconte.com/aes_c
http://wiznetmuseum.com/portfolio-items/un-attackablenon-breakable-of-w7500-and-w5500/
https://zavax.wordpress.com/2013/02/19/designing-bootloader-for-microchip-dspic33epic24e-micro-controller-1/

	Introduction
	Today’s Update Solutions
	Safety and Security
	Security Threats to In-field Firmware Updates
	Safety and Security Measure
	Safety Measures
	Security Measures

	Implementation Details
	AutoEPCIS UHF RFID Reader
	The Old Bootloader
	The Redesigned Bootloader
	Keys Management

	Measurements and Results
	Conclusion

