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Abstract. It is well established that sleep spindles
(bursts of oscillatory brain electrical activity) are sig-
nificant indicators of learning, memory and some dis-
ease states. Therefore, many attempts have been made
to detect these hallmark patterns automatically. In this
pilot investigation, we paid special attention to nonlin-
ear chaotic features of EEG signals (in combination
with linear features) to investigate the detection and
prediction of sleep spindles. These nonlinear features
included: Higuchi’s, Katz’s and Sevcik’s Fractal Di-
mensions, as well as the Largest Lyapunov Exponent
and Kolmogorov’s Entropy. It was shown that the in-
tensity map of various nonlinear features derived from
the constructive interference of spindle signals could
improve the detection of the sleep spindles. It was also
observed that the prediction of sleep spindles could be
facilitated by means of the analysis of these maps. Two
well-known classifiers, namely the Multi-Layer Percep-
tron (MLP) and the K-Nearest Neighbor (KNN) were
used to distinguish between spindle and non-spindle
patterns. The MLP classifier produced a high dis-
criminative capacity (accuracy = 94.93 %, sensitivity
= 94.31 % and specificity = 95.28 %) with significant
robustness (accuracy ranging from 91.33 % to 94.93 %,
sensitivity varying from 91.20 % to 94.31 %, and speci-
ficity extending from 89.79 % to 95.28 %) in separating
spindles from non-spindles. This classifier also gener-
ated the best results in predicting sleep spindles based

on chaotic features. In addition, the MLP was used to
find out the best time window for predicting the sleep
spindles, with the experimental results reaching 97.96 %
accuracy.
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1. Introduction

Spindles are part of the EEG signals recorded dur-
ing sleep, which originate in the underlying physiolog-
ical processes in the reticular nodules of the thalamus
and extend to the cortex [1]. These bursts of oscilla-
tory brain electrical activity are significant indicators
of learning, memory and some disease states. Sleep is
divided into Non-Rapid Eye Movement (NREM) and
Rapid Eye movement that NREM contains three stages
according to American Academy of Sleep Medicine
(AASM) standard [1]. Sleep spindles, a hallmark pat-
tern of sleep Stage 2, occur due to hippocampal rip-
ples and are characterized by waveforms 0.5–2 seconds
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long with a frequency content of 12–14 Hz [2], [3] and
[4]. Many studies have shown that there is a signifi-
cant increase in the occurrence of sleep spindles with
memory consolidation and encoding. In other words,
more spindles are indicative of higher encoding and
better recall [4], [5], [6], [7], [8] and [9]. Moreover,
some diseases such as Alzheimer’s [10], Rett Syndrome
[11] and schizophrenia [12] may be potentially recog-
nized based on the reliable and accurate detection of
the number of spindles and their morphological proper-
ties. As manual scoring of sleep spindles is tedious and
time consuming, researchers are eager to develop, test
and validate computer-based algorithms to detect the
occurrence of sleep spindles with a high discriminative
capacity comparable to outcomes achievable by means
of manual scoring.

To detect sleep spindles numerous methods have
been developed to produce clinically acceptable results.
A major part of the attempts has been focused on
feature extraction. Huuppone et al. quantified the
depth of sleep by using an amplitude feature as well
as an innovative feature called the sigma index and
detected sleep spindles derived from lateral channels
with 70 % accuracy and 98.6 % sensitivity [13]. Typ-
ically, time series features are extracted from spindle
shape. Rechtschaffen et al. used an amplitude thresh-
old for spindle detection and reached 70 % accuracy
[14]. Caldas da Costa et al. detected spindles by
using their amplitude, morphological properties and
statistical measures. They achieved a maximum ac-
curacy of 96.6 % [15]. In contrast to time series,
it has been shown that frequency or time-frequency
features could produce better results. Ahmed et al.
used wavelet packets to detect spindles and reached
93.7 % accuracy [16]. In another study, Duman et
al. used Discrete Wavelet Transform (DWT) to de-
tect spindles and achieved 92 % accuracy [17]. Najafi
et al. used the Bump model, which is based on contin-
uous Morlet wavelets, to detect spindles and reached
87.72 % accuracy with 99.49 % sensitivity [18]. Some
researchers, including Duman et al., believe that the
combination of different features could be useful. These
authors performed sleep spindle detection with a sensi-
tivity of 97.17 % by using three methods: Short-Time
Fourier Transform (STFT); A Multiple Signal Classi-
fication Algorithm; and The Teager Energy Operator
based on a decision tree [19]. Huupponen et al. used
some specific methods such as phase-locked loop and
complex demodulation, which resulted in 70 % accu-
racy with 97.7 % sensitivity [13]. Babadi et al. used
a novel algorithm based on the Bayes method called
DiBa, which separated spindles from non-spindle pat-
terns and reached 96 % sensitivity [20]. Barros et al.
detected sleep spindles by using the Independent Com-
ponent Analysis (ICA) method [21].

Recently, many advanced approaches have been de-
veloped to interpret and quantify the behavior of non-
linear dynamical or chaotic systems [23] and [24].
These systems are capable of exhibiting a high level
of fluctuations. The brain is an example of a chaotic
system and the EEG signals generated by this organ
reflect the summated fluctuations of excitatory and in-
hibitory postsynaptic potentials in the pyramidal cells
of the upper layers of the cerebral cortex. As the
underlying physiological system generating EEG sig-
nals is nonlinear, it is reasonable to expect that some
specific nonlinear features extracted from these signals
could be used to characterize and quantify the prop-
erties of transient waveforms that occur in them. For
instance, Higuchi’s, Katz’s and Sevcik’s Fractal Dimen-
sions as well as LLE and Entropy measures may pro-
vide valuable information to detect and predict spin-
dles as a short transient pattern. For instance, Acharya
et al. used Katz’s Fractal Dimension for sleep stag-
ing [22]. Allahverdy et al. used fractal dimension of
EEG signals to diagnose Attention Deficit Hyperactiv-
ity Disorder (ADHD) in children [23]. Polychronaki et
al. reported that fractal dimensions produced better
results in epilepsy detection than other features [24].

Based on the advancements mentioned above and to
improve automatic sleep spindle detection outcomes we
utilized a variety of discriminative linear and nonlinear
features and a mixture of them. In addition to time se-
ries features such as minimum, maximum, standard de-
viation, signal power, zero crossing and slope changes,
we made use of four chaotic (nonlinear) features includ-
ing the: Higuchi’s Fractal Dimension (HFD); Katz’s
Fractal Dimension (KFD); Sevcik’s Fractal Dimension
(SFD); the Largest Lyapunov Exponent (LLE) and
Kolmogorov’s Entropy (KE).

Our investigation showed that chaotic features could
give rise to adequate scattering in the feature space to
produce significant accuracy (94.93 %) with notable
robustness (3.6 % standard deviation) when a MLP
classifier was used for spindle detection. In addition,
in the detection part, we attempted to achieve the most
similarity between spindle and non-spindle segments by
choosing the non-spindle segments exactly one second
before spindle occurrence. In order to provide a bet-
ter sense of the adequacy of scattering in automatic
spindle detection, we generated intensity map plots,
spindle densities and spindle scattering. We also used
chaotic features in spindle prediction. Experimentally,
we showed that the chaotic features used for spindle
detection improved the scattering. We arrived at the
conclusion that: in order to achieve a better prediction,
non-spindle features should be extracted from EEG
segments approximately seven seconds before the oc-
currence of individual spindles.
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2. Methods

To achieve improved spindle detection, both linear and
nonlinear features were extracted from EEG signals.
Various types of linear features (also called Time Se-
ries features) were used to detect sleep spindles. In
this investigation, we used the same properties of the
EEG signals that a specialist analyzes to distinguish
between sleep spindles from non-spindles. These fea-
tures mainly included Zero Crossing (ZCR) and maxi-
mum (Max) amplitude in 0.5–2 s time windows. More-
over, inspired by a number of previous studies we also
made use of other linear features such as mean am-
plitude (Mean), minimum amplitude (Min), Standard
Deviation (SD) and power spectral density (PSD) cal-
culated over 0.5–2 s time windows [15] and [16].

In addition to the linear features describe above, we
used a variety of nonlinear features as described in the
sections below.

2.1. Higuchi’s Fractal Dimension
(HFD)

The fractal dimension of the basin of attraction is one
of the measures used to recognize dynamic behavior
limitations and show the degrees of freedom of a time
series. The HFD is a measure based on different sig-
nal lengths and their prediction with different time de-
lays. For a time series, the k time series construc-
tion is defined as Eq. (1), [25], where m is the ini-
tial point, k is the reconstruction delay and int(x) is
used to calculate the integer part of x. The length of
the new time series Lm(k) is defined as Eq. (2), where
(N−1)/(int((N−m)/k)·k) is the normalization factor.
The average length of the time series is measured by

averaging Lm(k), that is L(k) = 1
k

k∑
m=1

Lm(k). Here is

proportional to kFD, where FD is the fractal dimen-
sion value. In this study the Higuchi fractal dimension
was calculated from: log(L(k)) versus log(1/k) graph.

2.2. Katz’s Fractal Dimension
(KFD)

In 1988, Katz proposed a new method to estimate the
fractal dimension [26]. In this method the distance be-

tween the real data points was used to create a curve
comprised of the minimum number of points neces-
sary to do so. This fractal dimension was calculated
as Eq. (3), [26] and [27], where N is the total num-
ber of data points, L is the total length of the recon-
structed path and d is the diameter or planar extent of
the waveform.

FD =
log(N − 1)

log(N − 1) + log
(
d
L

) . (3)

2.3. Sevcik’s Fractal Dimension
(SFD)

Sevcik showed that fractal dimension could be approx-
imated by N signal samples. The Sevcik’s Method is
based on the normalization of EEG signals and time
axes [28] and [29]. The SFD is formulated as Eq. (4),
where L is the total length of the normalized signal and
N is the total number of points to be calculated.

FD = 1 +
ln(L)

ln(2(N − 1))
. (4)

2.4. Largest Lyapunov Exponent
(LLE)

The LLE Method was proposed by Wolf in 1985 [23] to
compute how fast a nonlinear dynamic system reaches
chaotic behavior. The basic concept underlying the
LLE Method is that after reconstructing the phase
space, the nearest neighbor is sought to find the ini-
tial embedding vector with the following criterion [23].
Neighbors should be separated in time to prevent
consecutive vectors of nearest neighbor to fall in the
same trajectories [23]. While trajectories are grow-
ing, distance between two trajectories are computed
with a pre-determined delay which is calculated by us-
ing the Minimum of value of the Mutual Information
(MMI) [30] and [31], which means minimum depen-
dency between two trajectories [30]. The LLE is based
on Eq. (5) as follows, [23] and [30], where k is the num-
ber of steps in which distances will be measured. L(ti)
and L(ti−1) are the distances between the nearest pair
of state vectors at time ti and the next time step, re-
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spectively.

L1 =
1

tk − t0

k∑
i

ln
L′(ti)

L(ti−1)
. (5)

2.5. Kolmogorov’s Entropy (KE)

The Kolmogorov’s Entropy (KE) is another parameter
used to quantify chaotic behavior, which is also based
on the phase space concept. The phase space is a space,
which represents all of the possible states of a system
with each point uniquely representing each one of those
states. It is a multi-dimensional space whose degrees
of freedom represent the number of axes in the multi-
dimensional space [31]. In this method, the phase space
is segmented into cells (multi-dimensional hyper-cubes)
and the probability that the trajectories are in these
hypercubes is used to calculate KE shown as Sn be-
low. This quantifier is also interpreted as the level
of a system’s complexity and its tendency to behave
chaotically. Complexity is calculated based on the reg-
ularity of trajectories. An increase in trajectory regu-
larity is indicative of a decrease in complexity and vice
versa. Sn is calculated as Eq. (6), [31], where q(i) is
the probability of the occurrence of the trajectories in
the phase space cells.

Sn = −
∑
i

q(i) · ln q(i). (6)

2.6. Data Analysis - Statistical
Measures

We interpreted our results based on three statistical pa-
rameters (as defined by the formulas below and collec-
tively called the discriminative capacity) for our pur-
poses here. A True Positive (TP) result is achieved
when a detected spindle by the algorithm agrees with
that of the expert. A True Negative (TN) result is ob-
tained if the absence of a spindle is correctly detected.
A False Positive (FP) result is set when the automatic
algorithm detects the presence of a spindle and there
is no spindle detected in manual scoring. On the con-
trary, a False Negative (FN) result is set when the algo-
rithm does not detect a spindle while the expert scores
its occurrence [15]:

Sensitivity = SEN =
TP

TP + FN
, (7)

Specificity = SPE =
TN

FP + TN
, (8)

Accuracy = ACC =
TP + TN

TP + TN + FP + FN
. (9)

2.7. Data Acquisition

The data were recorded using an EMBLA System (Ver-
sion N7000, Natus Medical, USA) with 10 channels
including: C3-M2, C4-M1, Cz-M1, F4-M1, F3-M2, Fz-
M1, T3-M2, T4-M1, O2-M1, and O1-M2. All channels
were recorded with reference to both mastoids based on
the 10–20 International Electrode Placement System,
where M1 and M2 are the left and right Mastoids, re-
spectively. The sleep EEG data acquired from C3-M2
and C4-M1 channels were used to extract spindle fea-
tures. Sleep stages were scored according to the Amer-
ican Academy of Sleep Medicine (AASM) Standard.
Our specialist at the Baharloo Sleep Research Center
scored 720 spindles in sleep Stage 2 from C3-M2 and
C4-M1 channels. The aggregate spindle lengths were
885.4 seconds, with 0.5 sec as the shortest and 1.8 sec-
onds as the longest length. The sampling frequency
was set to 200 Hz and the electrode contact impedance
was maintained below 5 kΩ.

In order to find the best time window position for
spindle prediction, a one second non-overlapping slid-
ing window was selected as the non-spindle segment.
Based on our experience, the maximum time between
every two spindles are usually 10 seconds or more. So,
we started the sliding window from 10 seconds before
any spindle to avoid taking a segment with spindle as
a non-spindle one. For each window position, non-
spindle features were extracted and classified. The
best result among the 10 segment positions was in the
seventh second window before spindle occurrence with
a 97.96 % accuracy. Also, by considering the average
TP and TN results, the best result corresponded with
the 7th second before spindles. The results are the av-
erage of 9 repeats of training and testing.

3. Experimental Setup

3.1. Subjects

Twenty-two healthy subjects (11 males, 11 females
with an average age of 22.3 years, and a range of 22–
26 years) participated in this study. However, com-
plete and quality assured data from only ten subjects
(5 males and 5 females) could be used for this inves-
tigation as two subjects did not follow proper instruc-
tions. Ethics approval was obtained from the Medical
Research Ethics Committee (MREC) of Shahed Uni-
versity. All subjects signed an informed letter of con-
sent before participation in the study. EEG signals
were acquired from these participants in the Baharloo
Sleep Research Center (Tehran, Iran) by using the In-
ternational 10-20 EEG Electrode Placement System.
Subjects were advised not to use any products con-
taining nicotine and/or caffeine for at least four hours
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before their participation in the test. Subjects slept
for two sequential days in the afternoons for approx-
imately one and half hours: the first day was for the
subjects to adapt to the environment and provide base-
line data and the second was the main day for data ac-
quisition (subjects experienced specific emotional stim-
uli by watching a variety of pictures selected from the
International Affective Picture System - IAPS – before
preparing to go to sleep).

3.2. Signal Processing

Using the EMBLA System’s software, EEG signals
were first filtered with a 50 Hz notch filter to remove
power-line noise. A 0.3 Hz high-pass and then a 40 Hz
low-pass filter were used to pass frequencies between
0.3–40 Hz. Subsequently, filtered signals were further
processed using a 16th order IIR type-II Chebyshev
band-pass filter with corner frequencies of 8 and 16 Hz
based on spindle frequency definitions (the type and
order of the filter were selected experimentally), [16].
Performing zero-phase digital filtering eliminated the
large amount of phase distortion generated by this fil-
ter. This was achieved by means of feeding the input
signal to the filter once in the forward and once in the
reverse direction [32]. A total of 720 spindle and 720
non-spindle signals were processed. Features were di-
vided into two categories:

• time series features, which are based on those
properties of the spindles that an expert would
use to detect them visually,

• nonlinear features, which are measures that are
not visually detectable by the expert.

Due to the non-stationary character of EEG signals,
they were first segmented using one-second windows
[16] and [17]. With this approach, it was possible to
assume signal stationarity [17]. The one-second time
windows were positioned at the beginning of the spin-
dles even though their lengths could have been more
than or less than one second. The non-spindle signals
for training the classifier were chosen exactly one sec-
ond right before the occurrence of spindles. One rea-
son for selecting the non-spindle signals as mentioned
above was to make sure that they occurred in sleep
Stage 2, the second reason was to ensure the existence
of the most similarity between two signal segments,
and the third reason was to assure that the non-spindle
segments would not contain spindles. To validate the
segmentation process, all segments were checked man-
ually. Consequently, we were able to show the utility
of these chaotic features in the classification of data in
the feature space.

The extracted features were automatically discerned
by using the Kth Nearest Neighbor (KNN) and Multi-

Layer Perceptron (MLP) classifiers. To classify the
scored (720) spindles, the dataset were folded into nine
folds such that each fold contained 80 spindles. One
fold was selected randomly as the test dataset while
the other folds were chosen as the training dataset.
The reported results are the average of nine repeats
of training and testing. The MLP classifier properties
were as follows: 7 neurons were contained in the hidden
layer with "Logsig" as the transfer function, six data
points from each fold of training data were withdrawn
for random cross-validation, and the output function
was a linear neuron. In order to use the KNN classi-
fier, different distance measures were used to choose the
nearest neighbor to classify, with the best distance be-
ing one. To find the best time location for predicting
the spindle pattern the same classification procedure
was used. The one-second non-spindle segments were
moved from 1 to 10 seconds before the occurrence of
each spindle segment.

4. Results

It is well established that the probability of spindle de-
tection increases with an increase in the intensity of
scattering between features [33] and wider scattering
can produce good decision boundary in categorizing
data. Figure 2 shows a comparison between the scat-
tering of chaotic (nonlinear) and linear features. It is
clear that the chaotic features produce a wider scatter-
ing than linear features. It is also evident that the lin-
ear features have more overlap compared to the chaotic
features.

The intensity maps showing the degree of scattering
of different nonlinear feature pairs are shown in Fig. 3,
Fig. 4, Fig. 5, Fig. 6 and Fig. 7. In these 3-D figures, the
vertical axes represent the scattering ratios (densities
or intensities). The color range in the intensity maps
indicate the level of scattering. A brighter color means
a higher scattering, which indicates a higher probabil-
ity of spindle detection and vice versa.

Figure 3 shows the degree of scattering of Higuchi’s
and Sevcik’s features. This figure demonstrates that
the density of spindles varies over a wide range and
the probability of spindle detection would increase if
feature scattering was enhanced.

It is observed that different FD features have scat-
tering measures that could be used effectively to detect
sleep spindles. The bright colors in Fig. 3 show that
the intensity map of Higuchi’s and Sevcik’s features
are interestingly independent and that the scattering
is more separated (Please compare to Fig. 4, Fig. 5,
Fig. 6 and Fig. 7 below and see Tab. 3).

In this section we first reflect on the results that
show how the degree of scattering of linear and non-
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Fig. 1: An example of a detected Spindle in sleep Stage 2.
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Fig. 2: A comparison between the scattering of chaotic (nonlinear) and linear features. It is clear that the chaotic features produce
a wider scattering than linear features. It is also evident that the linear features have more overlap compared to the chaotic
features. Wider scattering can produce good decision boundary in categorizing data.

Tab. 1: Discriminative capacity (accuracy, sensitivity and specificity) produced by the MLP classifier using different features.

Neural Network (MLP) Accuracy (%) Sensitivity (%) Specificity (%)
Time-series features 92.15±5.8 91.25±1.5 93.06±8.0
Chaotic features 93.24±3.00 92.15±0.2 94.31±2.9

Time-series and Chaotic features 94.93±1.89 94.58±0.16 95.28±0.8
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Tab. 2: Discriminative capacity (accuracy, sensitivity and specificity) produced by the KNN classifier.

K-Nearest Neighbor Accuracy (%) Sensitivity (%) Specificity (%)
Time-series features 87.98 88.00 87.96
Chaotic features 86.32 89.91 82.73

Time-series and Chaotic features 83.75 85.36 82.14

Tab. 3: The scattering of different features expressed in terms of Standard Deviation (SD), chaotic and some of the linear features.
ZCR is the abbreviation of Zero Crossing feature of waveforms. LLE is Largest Lyapunov Exponent.

Spindle KFD SFD HFD LLE Entropy Mean Max Min SD ZCR ZCR
Density

SD 8.524 10.741 11.942 1.2007 11.529 9.525 8.123 8.127 8.3714 10.03 10.55
Min 0.1248 1.3413 0 1.2278 −6.68·10−7 6.06·10−6 −5.5·10−5 2.82·10−6 2.06 18 20
Max 0.291 1.512 1.024 1.0819 5.50·10−7 5.83·10−5 −6.4·10−6 2.14·10−5 2.620 31 31
Mean 0.2294 1.4548 0.7603 7.9379 2.21·10−9 2.36·10−5 −2.3·10−5 1.06·10−5 2.484 26.44 26.894

linear features as well as the intensity maps of various
nonlinear features derived from the constructive inter-
ference of spindle signals could improve the detection
of the sleep spindles and how the prediction of sleep
spindles could be facilitated by means of the analysis
of these maps (To gain an appreciation for the wave
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Fig. 3: Intensity scattering distribution map of Higuchi’s and
Sevcik’s FDs. This map indicates that the intensity
scattering map of these features could be applied ef-
fectively for detection of sleep spindles.
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Fig. 4: Intensity map distribution of the Sevcik versus Katz
fractal dimension. The dark colors in the intensity scat-
tering map indicate the low dependency of Sevcik’s and
Katz’s FDs in the feature space. Thus, the map indi-
cates low scattering of Katz’s fractal dimension that has
destructive interaction against Sevcik’s FD.
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Fig. 5: Intensity map distribution of the HFD versus KFD. This
map indicates the low scattering and destructive inter-
action role of Katz’s FD against Higuchi’s. The low
scattering leads to the low dependence of spindle detec-
tion on Higuchi’s and Katz’s features.
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Fig. 6: Intensity map distribution of the Maximum versus the
Minimum features. This map demonstrates the depen-
dence of spindle detection on Minimum and Maximum
linear features.

shape of sleep spindles, Fig. 1 shows an example). We
then present the results of our pilot investigation based
on automatic classification outcomes achieved by using
3 types of features (time series, chaotic measures, and
a mixture of them) and 2 classifiers (KNN and MLP).
We show that nonlinear neurons in the MLP and the
chaotic features improved the detection and prediction
outcomes.
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Tab. 4: Spindle prediction (Experimental results).

Non-spindle lead Experimental prediction Average TP Average TN
time window (sec) results maximum results across results across

before spindle occurrence accuracy (%) folds folds
2 75.69± 5.3 74.00± 1 74.00± 5
3 78.81± 6.0 69.25± 1 74.00± 5
4 75.47± 3.3 72.62± 1 71.00± 5
5 70.97± 2.9 71.50± 1 72.87± 5
6 83.76± 3.0 72.50± 0 73.12± 4
7 97.96 ± 2.4 81.12 ± 0 79.60 ± 3
8 92.07± 4.3 74.12± 1 71.87± 3
9 91.81± 5.8 71.62± 1 73.5± 4
10 89.58± 4.1 72.50± 0 72.87± 4
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Fig. 7: Intensity map distribution of KFD versus Entropy. The
scattering in the figure emerges from the dependence of
the Katz’s fractal dimension on the parameter (q) in the
experimental results and the curve shown on the upper
right of the figure reflects the dependence of the KFD on
the parameter (q) in the production of the theoretical
results.

Figure 4 and Fig. 5 reveal that Katz’s model shows
a low scattering measure compared to other chaotic
features. The high intensity map with high scatter-
ing measure in Higuchi’s features and Sevcik’s fea-
tures makes these features suitable for spindle detec-
tion. The effectiveness of this point is shown in Fig. 3.
Simultaneously the large scattering and independency
in the intensity map could explain the detection of spin-
dles in another method (Fig. 6).

Figure 7 displays the intensity map of the KFD as
a function of Entropy. It is shown that the scattering
of EEG signals for this feature is improved by the use
of Entropy properties. The scattering of EEG signals
could be explained by means of the numbers of occur-

rences in the trajectory over the given time interval.
It is well known that the intensity map distribution
depends on the number of occurrences in a considered
cell. Also it should be mentioned that, the scattering
of the intensity map in the Katz model depends mainly
on the (g) parameter. Since q(i) is taken into account
in an arbitrary time interval window, the KFD could
be applied to the intensity map to consider its scat-
tering versus Entropy with both of them being time
dependent. As a result one can demonstrate that scat-
tering of these features can be meaningful and could
serve as a distinguishing feature in the time domain.

A chaotic feature, which is commonly used in
weather prediction and is also useful in biosignal pro-
cessing, is the LLE. This feature indicates how fast the
system moves towards chaos and a higher value means
a higher speed and vice versa. The average value for
non-spindle LLE feature was 2.5246 and for spindle fea-
ture was 7.9379, respectively. This shows that when
the brain produces spindles, on average it’s behavior
changes toward chaos for a period of about 2 seconds
and then changes to the previous state. Also, the dif-
ference between these two average values in comparison
with other features is appropriate for an algorithm to
make the decision. Based upon the SD, Minimum and
Maximum values in Tab. 3, and the scattering and in-
tensity map in Fig. 8 it can be expected that the LLE
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Fig. 8: Intensity map of the Entropy versus LLE. The scattering
shows the highest independency in comparison to the
other features.
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may have the best efficacy in comparison to other fea-
tures.

Table 1, Tab. 2 and Tab. 4 summarize the re-
sults. The spindle detection results by means of the
MLP classifier using time series (as linear) features;
chaotic (as nonlinear) features and their combination
are shown in Tab. 1. It is clear that with the MLP as
the classifier with the mixture of linear and nonlinear
features produced a noticeable effect in the detection
outcomes in comparison to the results when time se-
ries or chaotic features were used alone (Tab. 1). The
comparison results for the KNN classifier based on the
three different types of features mentioned above are
presented in Tab. 2. The average quantified feature val-
ues of the spindles with four parameters that included
Standard Deviation, Minimum, Maximum and Aver-
age are shown in Tab. 3. One-second segments (time
windows) were used to extract spindle and non-spindle
properties before spindle occurrence. The spindle pre-
diction outcomes based on using 10 different lead time
windows (starting 1 second to 10 seconds before spin-
dle occurrence) for non-spindle segments are presented
in Tab. 4. This table shows that starting the non-
spindle signal processing window 7 seconds before the
occurrence of sleep spindles produced the best spin-
dle prediction accuracy at 97.96 %. Please note that
Tab. 4 shows the results of spindle prediction by using
the MLP classifier.

5. Discussion

As it is evident from the results, the quality of detec-
tion and prediction of spindles are highly dependent on
both linear and nonlinear features. In the sleep liter-
ature, it is well established that there are a variety of
linear features that could be used for spindle detection.
In this investigation our sleep specialist used some lin-
ear features (such as Mean, Max, Min, SD, and ZCR,
collectively listed as time-series features) to character-
ize sleep spindles by their morphology. From Tab. 1,
one can observe the impact of linear and nonlinear fea-
tures on producing improved classification outcomes.
In our study, in addition to using linear features we
considered the use of nonlinear features to achieve bet-
ter detection and prediction, and utilized two classifiers
such as MLP and KNN to automatically classify sleep
spindles. The linear features could produce a max-
imum accuracy of 92.15 %. The detection accuracy
was further improved by inclusion of some nonlinear
features. In other words, it was shown that proper se-
lection of nonlinear features and their addition to the
feature vector fed to the classifiers could result in an
improvement in spindle detection accuracy of these al-
gorithms. This improvement could be attributed to the
nonlinear properties of EEG signals. In fact, nonlinear

features could carry information on some attributes of
the EEG signals, which are not visually evident.

The chaotic features that we selected as specific non-
linear features could improve the detection outcomes
due to the fact that they produced wider scattering and
less overlap in the feature space (Fig. 1 and Tab. 3);
this in turn could provide a better decision boundary
for automatic classification. As can be seen in Tab. 1
and Tab. 2, wider scattering of features increased the
classification accuracy to 93.24 %. Furthermore, it
was possible to achieve improved detection outcomes
by mixing time series and chaotic features. The incre-
mental improvement achieved in this case could be at-
tributable to the complexity and nonlinear properties
of the EEG signals captured by these nonlinear fea-
tures. In addition, our results showed that leveraging
the discriminative powers of both linear and nonlinear
features enabled us to achieve not only better accuracy
(94.93 %) but also higher efficiency. As a consequence
of these advantages, we decided to adopt the same ap-
proach in our sleep spindle prediction research. In this
investigation we also observed that the Fractal dimen-
sions (FDs), the Largest Lyapunov Exponent (LLE)
and Kolmogorov’s Entropy of EEG signals, as a set
of chaotic features, neatly fulfilled our objective in de-
tecting sleep spindles. The FD features measure self-
similarity in EEG signals effectively. One of the best
ways to show the self-similarity that occurs in EEG sig-
nals was to use Katz’s, Higuchi’s and Sevcik’s Fractal
Dimensions. The scattering of these nonlinear features
is shown in Fig. 2. It is observed that notable scat-
tering of FDs is a critical attribute of these features in
producing excellent results in the detection of spindles
and non-spindles. However, it is remarkable to note
that the Katz’s model of FD features produced inferior
results in spindle detection. This could be explained
by focusing on the Katz’s formula. According to this
formula [27], it was expected that the maximum di-
agonal distance between samples would occur between
the first and the end sample (d point is the maximum
diameter or planar extent of the waveform). But the
spindles’ shape created a distortion in the maximum
distance, which was found around the middle of the
spindles in our study.

As reported in Tab. 3, the SD and the differences
between Maximum and Minimum values in the KFD
are less than other features. The weakness of KFD
in spindle detection and the intensity map with low
scattering are revealed, which could effectively explain
the noticeable spindle detection of other FD features
except Katz’s in a similar manner.

We also observed that the nonlinear properties of
the MLP classifier resulted in more accurate detection
of sleep spindles in comparison to the KNN classifier.
This improvement was due to the inclusion of nonlin-
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ear functions of the MLP classifiers acting as neurons
to deal with an enormous range of data. On the other
hand, in the KNN classifiers the curse of dimensional-
ity occurs for the huge data range. The MLP classifiers
are suitable for use with chaotic features and the best
explanation for the excellent results shown in Tab. 1
is that we used different nonlinear chaotic features to
achieve these outcomes. Since nonlinear features are
applied to represent EEG signals, a set of these fea-
tures may capture the nonlinear properties of the EEG
signals more accurately.

Overall, our pilot investigation revealed that the ef-
ficacy of sleep spindle detection could be explained by
means of scattering and intensity map distribution of
nonlinear FD features. By thorough exploration, one
can find that the KFD is rather weak compared to the
other FDs. Simultaneously; the high coherence of the
scattering map in the Sevcik and Higuchi features could
effectively be applied in spindle detection. The differ-
ence between Minimum and Maximum values, which
are experimental to obtain, is measureable by a par-
allel method that could be used for spindle detection
(Tab. 3).

Here we summarize the detection and prediction of
spindles by making use of intensity map diagram as an
effective tool. The "Density" in the intensity map dia-
gram increases slightly or even considerably as a func-
tion of the scattering in the nonlinear features of spin-
dles. Initially, there is no spindle wave in the process-
ing window. As time increases, the window slides over
the signal until a spindle wave enters the window. Up
to this point the intensity has its minimal value (non-
spindle segments). As the spindle waves enter the win-
dow, the "Density" in the intensity map keeps growing
until the whole spindle set is inside the window. This
process could be best explained, by means of pertur-
bations in the scattering map of nonlinear chaotic fea-
tures. These perturbations lead to an increase in am-
plification of the intensity, which results in a construc-
tive interference of maxima in the map. The sum over
all possible maxima in the intensity map would result
in maximum intensity in the nonlinear features, which
is in complete agreement with the maximum distribu-
tion function. This explanation is in good agreement
with the previous consideration about the scattering
of nonlinear chaotic features (Fig. 2). Using this ex-
planation, one can predict sleep spindles in the EEG
spectrum by means of the intensity map distribution
function. In our experiments we found that the av-
erage prediction robustness could achieve a standard
deviation of 3.6 % after 9 times training with the MLP
classifier.

6. Conclusion

In this paper we discussed how we made use of a mix-
ture of linear and nonlinear features as well as two
classifiers to perform sleep spindle detection and pre-
diction. We used two well-known classifiers, the KNN
and MLP with the K-fold method and observed that
the MLP classifier achieved the best results with higher
robustness. Our results indicated that leveraging the
combined power of chaotic and time series features en-
abled us to better characterize the properties of EEG
signals for more accurate detection and of sleep spin-
dles. Using the nonlinear properties of EEG signals,
our experimental findings were further validated with
our results by using intensity distribution maps. It was
shown that the efficacy of sleep spindle detection and
prediction could be best explained by using the inten-
sity distribution function as an effective visualization
tool. Also, we showed that the robustness of the detec-
tion accuracy improved notably after training the MLP
classifier 9 times. In our future research in Finland, we
intend to extend the utility of these methods to robotic
therapy research with the objective to detect and pre-
dict the motor behavior of the human brain with
a specific focus on stroke patients.
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