
POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

Power System Dynamic Frequency Measurement
Based on Novel Interpolated STFT Algorithm

Junhao ZHANG 1, He WEN 1, Zhaosheng TENG 1, Radek MARTINEK 2, Petr BILIK 2

1College of Electrical and Information Engineering, Hunan University, Lushan Road (S),
Yuelu District, 410082 Hunan, China

2Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer
Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

zjh_hnu@163.com, he_wen82@126.com, tengzs@126.com, radek.martinek@vsb.cz, petr.bilik@vsb.cz

DOI: 10.15598/aeee.v15i3.2179

Abstract. As the product of time and frequency res-
olution of the Short-Time Fourier Transform (STFT)
constant, the dynamic frequency measurement accuracy
provided by the STFT is reduced under asynchronous
sampling. This paper proposes a novel Interpolated
Short-Time Fourier Transform (IpSTFT) based on the
Blackman window. The Blackman window is adopted
to reduce the spectral leakage, and the spectral interpo-
lation procedure is applied to eliminate the picket-fence
effects. Results of simulations are provided to show
that the proposed method can improve the accuracy of
dynamic frequency measurement significantly with low
time consumptions.
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1. Introduction

Frequency is an important parameter of power sys-
tem protection, power quality monitoring, operation,
and control of devices using digital technologies. The
ideal power system sinusoidal waveform is pure, contin-
uous, and of a constant fundamental frequency. How-
ever, due to the mismatch between power generation
and load demand, frequency in practical power sys-
tem varies over a small range which poses a threat to
efficiency and safety of entire system [1]. Thus the ac-
curate measurement and tracking of system frequency
is of utmost importance [2] and [3].

Power system frequency could be estimated com-
monly by zero-crossings detection, phase-locked loop,

Kalman filter, least-squares methods, Prony method,
Matrix Pencil, et al. However, the above mentioned
methods suffer from poor dynamic performance or high
computational burden for dynamic frequency measure-
ment [4]. Conventionally, the Discrete Fourier Trans-
form (DFT) and its accompanying Fast Fourier Trans-
form (FFT) are efficient for power system frequency
measurement because of the simplicity and easy im-
plementation. DFT-based methods generally require
an accurate match between the periodicity of DFT
data set and the periodicity of signal waveforms, i.e.
the synchronous sampling, otherwise the spectral leak-
age and picket-fence effects will occur [5]. The win-
dowed interpolation FFT algorithms are proposed to
reduce spectrum leakage and picket-fence effects caused
by asynchronous sampling, which can significantly im-
prove the accuracy of frequency measurement with
a steady-state assumption [6]. Although the DFT-
based methods perform well for the infinite time case
of a stationary signal, they cannot be used to resolve
any temporal information associated with these fluctu-
ations [7].

Since the power system frequency is subject to small
random deviations, it is required to depict variation of
the signal’s spectrum with time [8]. Thus a series of
time-frequency algorithms, including STFT, Wavelet
Transform (WT), S Transform (ST), and Hilbert-
Huang Transform (HHT) are applied for power system
dynamic frequency measurement. However, those ap-
proaches may either suffer from low solution accuracy,
cross-terms or less computational efficiency. For exam-
ple, the STFT has the effect of giving some time reso-
lution to the measurement at the expense of frequency
resolution; the WT requires expensive computation in
the decomposition of waveforms; the ST suffers from
poor energy concentration; HHT has the weakness of
cross-terms.
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For all above algorithms, the STFT has the lowest
computational burden due to its realization through
FFT. That is why the improved STFT-based ap-
proaches are called for as an important research field
even now. Recently, many improved algorithms based
on the STFT have been put forward. A commonly
used method to improve the time resolution of STFT
is the so-called variable window procedure. For in-
stance, in [7], a variable window STFT to analyse volt-
age and current signals for transmission line protec-
tion is proposed. In [8], an algorithm inspired by the
intersection-of-the-confidence intervals rule is proposed
for obtaining suboptimal window width in the STFT.
In [9], the threshold for autocorrecting the noise af-
fected frequency estimates is chosen according to the
frequency resolution determined by the STFT win-
dow size. Moreover, many studies have been con-
ducted to improve the time-frequency resolution of
STFT by combing additional operations. For exam-
ple, in [10], the synchronized STFT is proposed for
time-frequency analysis by using a synchronized linear
transform. In [11], a novel method to reduce distor-
tions is presented by using the STFT and the wavelet
packet filter banks. In [12], a time-stretched STFT is
proposed and demonstrated to overcome the limitation
in the time-frequency analysis of ultrafast signals. In
[13], a modified STFT is presented to estimate signals
from short-time magnitude spectra. However, few in-
vestigations have been done on the application of grid
dynamic frequency measurement by STFT because of
the low time-frequency resolution and low accuracy.

As mentioned above, the crucial drawback of the
STFT is that the product of time and frequency res-
olution is constant. Especially, the frequency mea-
surement accuracy provided by STFT is reduced when
the sampling frequency is not synchronous with the
analogue signal’s frequency. To improve the accu-
racy of dynamic frequency measurement provided by
STFT, this paper proposes the Interpolated Short-
Time Fourier Transform (IpSTFT) based on the Black-
man window. In the proposed method, the Blackman
window is adopted to reduce the error caused by the
spectral leakage, and the spectral interpolation proce-
dure is applied to eliminate the error caused by the
picket-fence effects. Results of simulations and prac-
tical applications are provided to show that the pro-
posed method can improve the accuracy of dynamic
frequency measurement significantly.

The organization of this paper is as follows. The
principles of STFT are reviewed in Sec. 2. The
concept of IpSTFT and the calculation formulas are
presented in Sec. 3. Simulation result is given in
Sec. 4. Finally, conclusion is drawn in Sec. 5.

2. Short-Time Fourier
Transform

In order to solve the shortcomings of Fourier trans-
form, Gabor proposed the STFT in 1946, which can
be used for time-frequency analysis of non-stationary
signals where the FT is not adaptable. The STFT
which is an extension of FT provides an insight in the
time-evolution of each signal components by decompos-
ing the time-varying signal into time-frequency domain
components [14] and [15]. And the continuous STFT
is expressed as

STFTx(t, f) =

∞∫
−∞

x(τ)w(τ − t)e−j2πftdt, (1)

where x(t) is the continuous-time signal, w(t) is the
window employed. Its corresponding discrete form is
described as

FSTFT (m,n) =

N−1∑
k=0

[x(k)w(k − n)] e−j2πmk/N , (2)

where x(k) is the discrete signal, w(n) is the discrete
form of window employed, N is the total number of
samples. When the w(k − n) is sliding along the x(k)
followed k varies, the discrete signal is truncated and
localized into a plurality of locally stationary signal,
and then the windowed small signal is analysed utiliz-
ing FFT [16] and [17].

The result of STFT is a two-dimension complex ma-
trix, and the magnitude of STFT can be expressed as

P (m,n) = |FSTFT (m,n)| . (3)

The column of P (m,n) corresponds to the sampling
time, each column vector is the spectrum of the cor-
responding moment. Similarly, row corresponds to the
frequency bin and each row vector represents spectrum
of one fixed frequency bin in time distribution. Ma-
trix elements are the spectral amplitude. According to
magnitude P (m,n), the time-frequency characteristic
can be acquired.

It is known that the use of STFT will result in
a trade-off between frequency resolution and time res-
olution, which is determined by the adopted window
w(t) from Eq. (1) [18]. Obviously, with different win-
dows as well as flexibility of different window length,
STFT can be used to analyse non-stationary signals
with different time-frequency resolution [19]. Notice,
for a given frame (or window) length, the trade-off be-
tween frequency resolution and time resolution can be
optimized by applying a rectangular window to each
frame, which will provide the best frequency resolu-
tion at a cost of higher side lobes compared to other
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windows. Considering that the desirable sidelobe per-
formances of adopted windows, i.e., a low-peak sidelobe
level and a high-sidelobe roll off rate, are indicative of
a small spectral leakage, which are very important for
suppressing harmonic interference in frequency mea-
surement [20] and [21]. Thus, it is of interest to im-
prove the frequency resolution without loss the desir-
able sidelobe performance.

3. The Proposed Approach

Assume that the power system frequency is dynamic
and it is presented as

x(t) = A0 sin(2πft+ ϕ0), (4)

where A0, f , ϕ0 are the amplitude, frequency and ini-
tial phase of the signal, respectively, while the f is
a time variable.

The discrete form obtained from x(t) with the sam-
pling frequency fs is described as

x(k) = A0 sin(2πfk/fs + ϕ0), (5)

where k is the discrete time index (0 ≤ k < N).

In this paper, Blackman window which is a three
order raise cosine window is adopted in the STFT, and
it can be expressed as

wB(i) = 0.42− 0.5 cos
2πi

L− 1
+ 0.08 cos

4πi

L− 1
, (6)

where L is the window length and i = 0, 1, . . . , L − 1.
The DFT of the Blackman window can be represented
as

WB(λ) = 0.42WR(λ)− 0.25[WR(λ− 1) +WR(λ+1)]+

+ 0.04[WR(λ− 1) +WR(λ+ 1)], (7)

where WR(λ) is the DFT of the rectangle window and
λ = 0, 1, . . . , L− 1.

The Blackman-window-based STFT can thus be ob-
tained by substituting Eq. (6) into Eq. (2), which is

FB−STFT (m,n) =
N−1∑
k=0

[
0.42x(k) + 0.5x(k)·

· cos 2π(k − n)
L− 1

+ 0.08x(k) cos
4π(k − n)
L− 1

]
e−j2πmk/N .

(8)
Equation (8) can be rewritten in the form of matrix,
as follows:

FB−STFT (m,n) =

=


~α1
~β1 ~α1

~β2 ~α1
~β3 · · · ~α1

~βn
~α2
~β1 ~α2

~β2 ~α2
~β3 · · · ~α2

~βn
~α3
~β1 ~α3

~β2 ~α3
~β3 · · · ~α3

~βn
· · · · · · · · · · · · · · ·
~αm~β1 ~αm~β2 ~αm~β3 · · · ~αm~βn

 .
(9)

The ~αm which named frequency vector is described as

~αm = [x(0)H1
m x(1)H2

m x(2)H3
m · · · x(k)Hk

m], (10)

and the ~βn which is called window vector can be given
by

~βn = [w(0−n) w(1−n) w(2−n) · · · w(k−n)]T , (11)

where m = 1, 2, . . . , (L/2) + 1, n = 1, 2, . . . ,fix(N −
D)/(L − D), in which fix() means the rounding func-
tion and D is the duration between two times of FFT
when calculating the STFT. Hk

m corresponds to the
transformation kernel that is defined as

Hk
m = e−j2πkm/N . (12)

By ignoring the effect of negative frequencies, the value
of ~αm~βn can be written as

V (m,n) = ~αm~βn =

= (A0/2j)e
jmWE [2π · ((m− n)− k0(n))/N ],

(13)

whereWE represents the spectral of window employed,
k0(n) is the exact spectral line corresponds to signal
frequency f .

In the case of synchronous sampling, the effective
position of signal frequency f is sitting right at the
frequency bin of column n, i.e., k0(n) = fL/fs is
an integer, where the frequency can be calculated by
using the corresponding frequency bins. However, it
is almost impossible to achieve synchronous sampling.
With non-synchronous sampling, k0(n) can be written
in two parts, i.e., k0(n) = θ(n) + ξ(n), where θ(n) and
ξ(n) are the integer and fractional parts, respectively.
The integer part θ(n) can be determined by applying
a simple peak search procedure to the column n of
PB−STFT (m,n) which is described as follows

PB−STFT (m,n) =

=


|~α1

~β1| |~α1
~β2| |~α1

~β3| · · · |~α1
~βn|

|~α2
~β1| |~α2

~β2| |~α2
~β3| · · · |~α2

~βn|
|~α3

~β1| |~α3
~β2| |~α3

~β3| · · · |~α3
~βn|

· · · · · · · · · · · · · · ·
|~αm~β1| |~αm~β2| |~αm~β3| · · · |~αm~βn|

 .
(14)

Assume that the |~αm1
~βn| represents the local largest

magnitude in PB−STFT (m,n) of column n, therefore,
we can obtain that θ(n) = m1(n). Notice that the di-
rect utilization of the integer part θ(n) for frequency
measurement with non-synchronous sampling would
produce undesired errors.

In this paper, the spectral interpolation procedure
is applied on the matrix PB−STFT (m,n) which could
improve the accuracy of dynamic frequency measure-
ment. In the proposed interpolation procedure, the
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fraction part ξ(n) is calculated via using spectral lines
of the local largest and second largest magnitude in
PB−STFT (m,n), namely |~αm1

~βn| and |~αm2
~βn| (0 <

m1 6= m2 < L/2) of column n, respectively. Thus the
interpolation coefficient ψ(n) can be demonstrated as

ψ(n) =
|~αm2

~βn| − |~αm1
~βn|

|~αm1
~βn|+ |~αm2

~βn|
. (15)

Usually, m1(n) is adjacent to m2(n), i.e., m1(n) =
m2(n) ± 1, we thus can obtain that m2(n) = k0(n) −
ξ(n)± 1.

Substituting ~αm1, ~αm2 and ~βn into Eq. (15), the
coefficient ψ(n) can be rewritten in Eq. (16).

ψ(n) =

= |WE(2π(−ξ(n)−n)/N)|−|WE(2π(−ξ(n)−n±1)/N)|
|WE(2π(−ξ(n)−n±1)/N)|+|WE(2π(−ξ(n)−n)/N)| .

(16)

where the symbol ’±’ must be the same at one time.

So the result of coefficient ξ(n) can be calculated by
the inverse of Eq. (16) which could be represented as

ξ(n) = g(ψ(n)), (17)

where the ψ(n) is independent variable and the ξ(n) is
the dependent one.

In order to reduce the error, we apply the polynomial
approximation method to calculate the ξ(n). The poly-
nomial approximation formula of the coefficient ξ(n)
can be described as:

ξ(n) = g(ψ(n))

≈ c1 · ψ(n) + c3 · ψ3(n) + c5 · ψ5(n) + · · ·+
+c2i+1 · ψ2i+1(n) =

=
+∞∑
i=0

c2i+1 · ψ2i+1(n).

(18)

The accuracy is determined by the order i of the
polynomial, and for usual, when the order i is 7, the
polynomial is effective and sufficient for most imple-
mentation, which can be written compactly in matrix
notation as

ξ(n) = ~C ~Q, (19)

where ~C is the coefficient vector of window employed
that can be described as

~C =
[
c1 c3 c5 c7

]
, (20)

and the vector ~Q is demonstrated as

~Q =
[
ψ(n) ψ3(n) ψ5(n) ψ7(n)

]T
. (21)

The result of ~C is estimated by least-squares-
method-based equation which can be represented as

∂e2

∂c2i+1
=

∂

(
3∑
i=0

c2i+1 · ψ2i+1(n)− ξ(n)
)2

∂c2i+1
= 0, (22)

where e is the error between the test data and results
calculated by Eq. (17). We can obtain the vector ~C of
different windows by solving Eq. (22).

The coefficient vector ~CB of Blackman window
is [1.96043163, 0.15277325, 0.0742583, 0.04998548]. So
that we can obtain the polynomial of coefficient ξ(n)
based on the Blackman window as follows:

ξB(n) = 1.96043163ψ(n) + 0.15277325ψ3(n)+
+0.07425838ψ5(n) + 0.04998548ψ7(n).

(23)

Finally, the Blackman-window-based dynamic fre-
quency fd(n) of the signal is obtained as

fd(n) = [m1(n) + ξB(n)]fs/L. (24)

From Eq. (14), it is known that if the frequency fluc-
tuates in a small range around its normal value which
is 50 Hz in China, as well as the window length L is
determined, we can lower the time consumption signif-
icantly by calculating the values of 2 or 3 rows only
(usually m1, m2, and the third largest if necessary),
i.e., the amount of calculation will reduce to 4/L or
6/L compared with the original. The reason is that
the spectral line, which corresponds to the band where
frequency varies, may just lie between two of the largest
three spectral lines.

The workflow of the proposed IpSTFT is shown in
Fig. 1.

Calculate ( ) by ( ),
then frequency ( )

is obtained

n n
f n
ψξ

d

Calculate the matrix
with

Blackman-window

m nFB-STFT ( , )

Calculate ( )
by | | and | |

ψ n
α β α βm n m n1 2

Find the local largest two
magnitude | | and

| | in ( , )

α β

α β
m n

m n B-STFT

1

2 P m n

Get the ( , )
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m nP

F

B-STFT

B-STFT ( , )m n

Set the duration and
the window length

D
L

Sampling ( )x k

Input signal ( )x t

Start

Stop

Fig. 1: Workflow of interpolated short-time Fourier transform
algorithm.
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4. Simulations

In order to evaluate the time-frequency performance
of the proposed method, two kinds of signals are im-
plemented in this section. One is frequency-hopping
signal while the other is chirp. To make comparisons,
the Blackman-window-based FFT, Morlet-based WT,
Blackman-window-based STFT and ST are adopted.
The parameter D is set to 24 while the length L of
Blackman window is 256.

4.1. Frequency Measurement of
Frequency-Hopping Signal

The simulated frequency-hopping signal can be written
as

x(t) = 220 sin(2πft), (25)

where the range of fundamental frequency f is from
49.5 Hz to 50.5 Hz with varying in steps of 0.1 Hz.
The variations of f and the hopping time range are
tabulated in Tab. 1.

Tab. 1: Frequency variation of simulated signal.

Time range (s) f (Hz) Time range (s) f (Hz)
(0, 0.404] 49.5 (2.004, 2.4] 50.5

(0.404, 0.806 4] 49.7 (2.4, 2.796 4] 50.4
(0.806 4, 1.207 2] 49.9 (2.796 4, 3.195 2] 50.2
(1.207 2, 1.606 4] 50.1 (3.195 2, 3.596 8] 49.8
(1.606 4, 2.004] 50.3 (3.596 8, 4] 49.6

The sampling frequency fs of the simulated signal
is 2000 Hz and the total length is 8 · 103. The time
domain waveform of the simulated signal is shown in
Fig. 2.

Fig. 2: Time domain waveform of simulated signal.

1) Frequency Measurement Based on FFT

The result of FFT with Blackman window is a sin-
gle value 50.2139 Hz which is meaningless and cannot
represent the variation of the simulated signal. That
means the FFT is not suitable for dynamic frequency
measurement.

2) Frequency Measurement Based on WT

Wavelet transform in this section uses the Morlet Con-
tinuous Wavelet Transform whose scale are 256 and
512, respectively. The peak frequency (frequency bin
which the maximum value in each column correspond-
ing to from the matrix of time-frequency analysis) char-
acteristics are plotted in Fig. 3.

Fig. 3: Time-frequency analysis based on WT.

In Fig. 3, the blue and green lines represent the re-
sults of scale 512 and 256 WT respectively. It can be
seen from the graph apparently that the 256-scale WT
is constrained whose result is a constant over the entire
time range. Similarly, the 512-scale WT cannot give
a specification about variations even though the result
is better. From Fig. 3, we know that the WT hardly
meets the requirement of dynamic frequency measure-
ment on account of the low time-frequency resolution.

3) Frequency Measurement Based on ST

The sampling frequency interval of ST applied in this
section is 1 and 2. Figure 4 demonstrates the peak
frequency calculated.

From the result of ST in Fig. 4, it is known that
the variations are represented obviously as well as the
changing moment. Meanwhile, we see that the result
is better when the sampling interval is 1. However,
at 50.1 Hz, 50.3 Hz, 49.9 Hz, 50.4 Hz and 49.6 Hz,
there are errors between the estimations and sets. This
is to say the frequency characteristic is still described
incorrectly by the curves due to the inadequate time-
frequency resolution.

Accordingly, we can say that the performance of ST
is better than WT. Unfortunately, the variations still
cannot be measured clearly and correctly to fulfil the
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requirement of power dynamic frequency measurement.

Fig. 4: Time-frequency analysis based on ST.

4) Frequency Measurement Based on STFT

The STFT used here is based on Blackman window
whose window length is 1024 and shift length is 24.
The simulation result is shown in Fig. 5.

In Fig. 5, the blue line on the background of calcu-
lated values being displayed by kinds of colours. In the
figure, the lighter colour corresponds to a larger value
of the time-frequency matrix while the darker colour
corresponds to a smaller. From Fig. 5, it can be con-
cluded that the by using STFT, it is difficult to obtain
the specification of dynamic frequency. Furthermore,
there is no data in the range 0∼0.26 s and 3.74∼4 s due
to the window adopted as well as edge effects. Analy-
sis above shows that due to the poor resolution, STFT
cannot meet the requirement either.
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Fig. 5: Time-frequency analysis based on STFT.

5) Frequency Measurement Based on
IpSTFT

The window length L and shift length D of Blackman-
window-based IpSTFT are 256 and 24, respectively.
The STFT (window length 256) here is performed as
a comparison with the result illustrated in Fig. 6. The
response of the proposed algorithm is plotted in Fig. 7.
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Fig. 6: Time-frequency analysis based on STFT (Blackman
window-256).

Figure 6 shows that the STFT cannot give a satisfied
result while the window length is 256 only. However,
when it comes to IpSTFT, the result changes a lot.
The time-frequency characteristic given by the curve
in Fig. 7 shows that over the range from 49.5 Hz to
50.5 Hz, the specification of variations can be extracted
accurately.

The relative errors of frequency measured by differ-
ent algorithms are provided in Tab. 2. The results with
shadows indicate the minimal relative errors among
the adopted algorithms. The number represents the
scale adopted in WT(256), WT(512). As to ST(2) and
ST(1), the number means the sampling frequency in-

Fig. 7: Time frequency analysis based on IpSTFT (Blackman
window-256).
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Tab. 2: Comparisons of frequency measurement accuracy based on the three time-frequency analysis algorithms.

f (Hz) WT WT ST ST STFT STFT IpSTFT
(256) (512) (2) (1) (1024) (256) (256)

49.5 2.5·10−2 −1.3·10−2 −1.2·10−4 −1.2·10−4 −1.3·10−2 −5.3·10−2 1.8·10−4

49.6 2.3·10−2 −1.5·10−2 −2.1·10−3 −2.1·10−3 −1.5·10−2 −5.4·10−2 1.7·10−4

49.7 2.1·10−2 −1.7·10−2 −4.1·10−3 8.8·10−4 −1.7·10−2 −5.6·10−2 1.5·10−4

49.8 1.9·10−2 −1.9·10−2 3.8·10−3 −1.1·10−3 −1.9·10−2 −5.8·10−2 1.3·10−4

49.9 1.9·10−2 1.7·10−2 1.8·10−3 1.8·10−3 1.7·10−2 −6.0·10−2 1.2·10−4

50.1 1.3·10−2 1.3·10−2 −2.1·10−3 −2.1·10−3 5.2·10−2 −6.4·10−2 8.7·10−5

50.2 1.1·10−2 1.1·10−2 −4.1·10−3 8.7·10−4 5.0·10−2 −6.6·10−2 7.1·10−5

50.3 9.5·10−3 9.5·10−3 3.8·10−3 −1.1·10−3 4.8·10−2 −6.8·10−2 5.5·10−5

50.4 7.5·10−3 7.5·10−3 1.8·10−3 1.8·10−3 4.63·10−2 −6.9·10−2 3.9·10−5

50.5 5.5·10−3 5.5·10−3 −1.2·10−4 −1.2·10−4 4.4·10−2 −7.1·10−2 2.3·10−5

terval; the number represents the length of window em-
ployed of STFT(1024), STFT(256), and IpSTFT(256).
aE-b indicates that the number is a · 10−b.

From Tab. 2, we know that the relative error of
IpSTFT is smaller than that of others. In band of
49.5∼50.5 Hz, the relative error of IpSTFT is 2∼3 or-
der of magnitude lower than that of WT and STFT.
Compared with ST, the error is 1∼2 order of magnitude
lower. Consequently, we could say that the relative er-
ror of IpSTFT is the least among the algorithms ap-
plied. From the analysis, it is known that the result of
frequency measurement is accurately determined when
using the proposed algorithm, as well as the stability
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(a) Time frequency analysis of chirp signal based on STFT with
constant length L = 256.
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(b) Time frequency analysis of chirp signal based on STFT with
constant length L = 1024.

Fig. 8: Time frequency analysis of chirp signal based on
(a) STFT(256) and (b) STFT(1024).

and reliability both meet the requirement of dynamic
frequency measurement.

4.2. Frequency Measurement of
Chirp Signal

The chirp signal of sampling frequency 2000 Hz is pure
in the simulated time 0∼8 s with its component in-
creasing from 20 Hz to 90 Hz. The total number of
samples is 1.6 · 104, and the results of the techniques
mentioned above are delineated in Fig. 8, Fig. 9, Fig. 10
and Fig. 11.
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(a) Time frequency analysis of chirp signal based on WT with
scale L = 256.
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(b) Time frequency analysis of chirp signal based on WT with
scale L = 512.

Fig. 9: Time frequency analysis of chirp signal based on
(a) WT(256) and (b) WT(512).
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(a) Time frequency analysis of chirp signal based on ST with
sampling frequency interval 1.
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(b) Time frequency analysis of chirp signal based on ST with
sampling frequency interval 2.

Fig. 10: Time frequency analysis of chirp signal based on
(a) WT(256) and (b) WT(512).

In Fig. 8, the STFT based on Blackman with win-
dow length 256 and 1024 are depicted. It can be seen
that the concentration of STFT(1024) is better than
that of STFT(256), which means the time-frequency
performance of STFT(1024) is better. However, both
STFT(1024) and STFT(256) cannot demonstrate the
accurate frequency on the time axis. Next, Fig. 9 gives

Fig. 11: Time frequency analysis of chirp signal based on Ip-
STFT(256).

the outcomes of wavelet with different scale values, but
the frequency variations results are still blurs. Fig-
ure 10 presents the results of S transform which gives
a perfect response to the simulated signal. However,
the end effects and the worse concentration at the
higher frequency, especially the huge computational
burden make it difficult to implement in embedded
power system dynamic frequency measurement.

As seen from Fig. 8, Fig. 9 and Fig. 10, for all the
techniques that are considered, the calculated values of
frequency cannot reach a precise agreement with the
presented scenario. However, utilization of the pro-
posed algorithm can solve the issue perfectly, and the
simulation result is given in Fig. 11. In Fig. 11, the
frequency of the given signal is calculated by IpSTFT,
and the outcome is tremendously keeping pace with the
variations of simulated signal which shows the accuracy
of the proposed algorithm.

4.3. Analysis with White Noise

Measurement of dynamic frequency signal corrupted
by white noise is another simulation carried out to
evaluate the proposed algorithm. The signal applied
here is demonstrated in Eq. (24) with its frequency
f = 50.1 Hz constant and it is disturbed by random
Gaussian noise with zero mean. The other conditions
are same with previous settings, e.g., the sampling fre-
quency fs = 2000 Hz, the window length L = 256,
and the duration D = 24. The proposed algorithm
with different white noise of SNR ranging from 20 to
100 dB is observed. Each method based on different
windows and SNR value is executed for 500 runs, and
the variances of frequency obtained by simulation are
delineated in Fig. 12. To emphasize the accuracy of

Fig. 12: Variance of frequency measurement obtained by sim-
ulation with different SNR value when using different
windows.
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Tab. 3: Frequency variation of simulated signal.

f=50.1 BW HNW HMW TW 4-order 4-term
TWSC MDW

Relative 1.07·10−4 1.1·10−4 5.1·10−4 5.4·10−5 7.45·10−6 1.16·10−7

error
Absolute 5.4·10−3 5.5·10−3 2.56·10−2 2.32·10−3 3.73·10−4 5.82·10−6

error (Hz)

Tab. 4: Comparisons of time consumption.

Algorithm WT WT ST ST STFT STFT IpSTFT
(256) (512) (2) (1) (1024) (256) (256)

Time
consumption 1.31 2.29 0.61 0.91 0.19 0.17 0.19
of hopping (s)

Time
consumption 3.85 5.64 1.43 2.31 0.22 0.18 0.20
of chirp (s)

IpSTFT based on different windows, the simulation of
sinusoid signal whose frequency f = 50.1 Hz without
any disturbance is adopted and the result of relative er-
ror else with the absolute error are tabulated in Tab. 3.

Figure 12 shows that the variances are inversely pro-
portional to the SNR tolerably, which means that more
accurate results can be achieved when there is less noise
in the signal channel. That means that the accuracies
of frequency measurement decrease, if the signal is cor-
rupted by white noise. In addition, we can see that
the Blackman window provides the minimum variance
among the classical windows adopted, as well as the
considerable robustness. And, when the improved win-
dows are employed, i.e., 4-order TSCW (Triangle Self-
Convolution Window) and 4-term MDW (Maximum
sidelobe Decay rate Window), the performance of Ip-
STFT would turn better on accuracy significantly. The
variances of 4-term MDW are inversely proportional to
the SNR totally, which represents high precision while
signal suffers from weak white noise (SNR>60).

Table 3 shows the accuracy comparison of pure sine-
wave signal based on IpSTFT with different windows
including BW(Blackman Window), HNW(Hanning
Window), HMW(Hamming Window), TW(Triangle
Window), 4-order TSCW, and 4-term MDW. From
Tab. 3, it is obvious that the Blackman window of-
fers the best performance among the classical windows.
And if the higher accuracy is required, IpSTFT could
also be satisfied by employing new windows, i.e., 4-
order TSCW and 4-term MDW. The simulations in
this part show that IpSTFT can provide both suitable
measurement bias and variances, which means a better
performance in application of power system dynamic
frequency analysis.

4.4. Simulation of Time
Consumption

In this paper, the simulation platform consists of Mat-
lab R2012b and Lenovo Y470 with the processor core
I5-2450M@2.5 GHz. The average elapsed time of 500
times with different algorithms is shown in Tab. 4.

As can be seen from Tab. 4, the time consumption
of IpSTFT else with STFT is much less than that of
WT and ST. However, the resolution of STFT is fixed
and the accuracy of frequency measurement provided
is inadequate. Notice that the average running time
of IpSTFT(256) is almost tenfold lower than that of
WT and ST. The large calculation amount of WT and
ST prevents them being adopted in embedded systems,
because it cannot provide the basic resource what the
algorithms need. Through the simulation, it is known
that IpSTFT is up to power system dynamic frequency
measurement due to the accuracy of frequency mea-
surement and lower time consumption. Besides, the
advantage of lower time consumption also makes it pos-
sible of being used in embedded systems for power sys-
tem applications.

5. Conclusion

In this paper, a novel interpolated STFT algorithm
for power system dynamic frequency measurement
is proposed. The limitations of the traditional time-
frequency analysis, which inherently require huge com-
putational burden and the time-frequency resolution
deficiency, have been resolved by the proposed algo-
rithm. Utilizing the frequency domain interpolation
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procedure offers a convenient way to achieve high accu-
racy of dynamic frequency measurement. Simulations
based on hopping signal and chirp signal are performed
to indicate the effectiveness and accuracy of the pro-
posed method in comparison with STFT, ST, and WT.
In addition, the simulation under white noise is carried
out to evaluate the robustness of the proposed algo-
rithm. As a result, it can be seen that the proposed
IpSTFT is suitable for measuring localized transient
behaviour of power system dynamic frequency in em-
bedded systems. Furthermore, the proposed algorithm
in this paper can be developed not only to disturbance
evolution assessment, but also for the classification and
identification of the power quality disturbance.
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