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Abstract. Highly accurate classification of sleep stages
is possible based on EEG signals alone. However, re-
liable and high quality acquisition of these signals in
the home environment is difficult. Instead, electrocar-
diogram (ECG) and Respiratory (Res) signals are eas-
ier to record and may offer a practical alternative for
home monitoring of sleep. Therefore, automatic sleep
staging was performed using ECG, Res (thoracic excur-
sion) and EEG signals from 31 nocturnal recordings of
the Sleep Heart Health Study (SHHS) polysomnography
Database. Feature vectors were extracted from 0.5 min
(standard) epochs of sleep data by time-domain, fre-
quency domain, time-frequency and nonlinear methods
and optimized by using the Support Vector Machine
-Recursive Feature Elimination (SVM-RFE) method.
These features were then classified by using a SVM.
Classification based upon EEG features produced a Cor-
rect Classification Ratio CCR = 0.92. In compar-
ison, features derived from ECG signals alone, that
is the combination of Heart Rate Variability (HRV),
and ECG-Derived Respiration (EDR) signals produced
a CCR = 0.54, while those features based on the com-
bination of HRV and (thoracic) Res signals resulted
in a CCR = 0.57. Owerall comparison of the results
based on standard epochs of EEG signals with those
obtained from 5-minute (long) epochs of cardiorespira-
tory signals, revealed that acceptable CCR = 0.81 and
discriminative capacity (Accuracy = 89.32 %, Speci-
ficity = 92.88 % and Sensitivity = 78.64 %) were also
achievable when using optimal feature sets derived from
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long epochs of the latter signals in sleep staging. In
addition, it was observed that the presence of some ar-
tifacts (like bigeminy) in the cardiorespiratory signals
reduced the accuracy of automatic sleep staging more
than the artifacts that contaminated the EEG signals.

Keywords

Automatic sleep staging, ECG-derived respira-
tion signals, Electroencephalogram (EEG) sig-
nal, Heart Rate Variability (HRV) signal, Res
(thoracic excursion) signal.

1. Introduction

Generally speaking we can categorize 2 types of sleep:
Non-Rapid Eye Movement (NREM) sleep, and Rapid
Eye Movement (REM) sleep. The NREM sleep can
be in turn sub-categorized as Stages 1 through 4, with
Stage 1 being the lightest and Stage 4 being the deepest
sleep state [1]. Similarly, in the AASM sleep standards,
the NREM stage is sub-grouped into three Stages of
N1, N2 and N3 [2]. Polysomnography (PSG) or “mul-
tiple recording of physiological signals during sleep® is
widely used as the "gold standard" clinical technique
for the evaluation of sleep and diagnosis of its disor-
ders. In PSG signals such as EEG, ECG, EMG, EOG,
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Respiration (Res) and others are recorded simultane-
ously during sleep. Among these signals, EEG is the
most commonly used for sleep staging [3].

Because of the significant and pivotal roles that EEG
signals play in sleep studies, a wide variety of ap-
proaches and techniques have been proposed for Auto-
matic Sleep Staging based on these signals [4], [5], [6],
[7] and [8]. In reference [4], the authors used single-
channel EEG data to perform sleep stage scoring by
leveraging a method called Complete Ensemble Empir-
ical Mode Decomposition (EMD) with Adaptive Noise
(CEEMDAN). They used bagging to classify the dif-
ferent sleep states. This work achieved an accuracy of
90.69 % in classifying 5 sleep stages. In another study
[5], the investigators extracted many spectral features
based on the Fast Fourier Transform (FFT) of mul-
tichannel PSG data to classify sleep stages by using
a rule-based Decision Tree (DT) classifier and achieved
an accuracy of 84 %.

A wide range of time- and frequency-domain fea-
tures have been explored by the authors in reference
[6] based on PSG signals that included two EEG chan-
nels, two EOG channels and one EMG channel for au-
tomatic sleep stage scoring. Their method based on
a Dendrogram-SVM (DSVM), resulted in 92 % accu-
racy, 94 % specificity, and 82 % sensitivity. Kayikcioglu
et al. [7] extracted Auto-Regressive (AR) coefficient
features from a single channel EEG signal to classify
both sleep and wake stages with an accuracy of 91 %
using a Partial Least Squares Regression (PLSR) clas-
sifier.

Despite being highly accurate in classifying sleep
stages automatically, EEG signals do not easily lend
themselves to reliable acquisition in the home environ-
ment. This is in stark contrast to ECG and Res sig-
nals that have proved to be far easier to record in such
environments and may suggest a viable alternative to
home monitoring of sleep. Moreover, it has been in-
dicated that the Heart Rate Variability (HRV) signal
spectral components produce quantitative markers of
sympathetic and parasympathetic activities of the Au-
tonomic Nervous System (ANS), which differ signifi-
cantly during wake and different sleep stages. As such,
using HRV signals to extract information for automatic
sleep staging is a promising exploration [9] and [10].

Recently, there has been a surge in the number of
approaches to sleep scoring based on ECG and Res
signals. For instance, Penzel et al. indicated that the
dynamics of HRV signals are different in wake and sleep
stages by deploying Detrended Fluctuation Analysis
(DFA), [10]. In addition, they utilized spectral anal-
ysis and DFA so as to extract information from HRV
signals separately for automatic sleep staging and dis-
covered that in comparison with spectral analysis, DFA
is a more verifiable approach [12]. Likewise, Redmond
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et al. [13], [I4] and [I5] extracted a variety of use-
ful spectral parameters and time-domain features from
0.5-minute epochs of HRV and Res signals. They man-
aged to attain an accuracy of 79 % in an effort to dis-
tinguish among Wake, NREM and REM Sleep Stages
by a subject-independent classifier. The accuracy in
their investigation plummeted to 67 % in a subject-
specific system [13]. Additionally, they could achieve
an accuracy of 76.1 % for a 3-class (Wake, NREM
Sleep and REM) system employing cardiorespiratory
signals [14]. Andane et al. [16], used HRV signals
for sleep analysis, extracted features by using spectral,
time-domain, and DFA methods and were able to sep-
arate Wake and Sleep Stages (2 classes) attaining an
accuracy of 79.99 %. Similarly, Mendez et al. [I7],
deployed a time-varying autoregressive model to ex-
tract features from HRV signals and used a Hidden
Markov Model (HMM) for the purpose of classifica-
tion. They managed to separate REM and NREM
sleep (2 classes) with 79 % accuracy. Kesper et al.
[18], also utilized spectral parameters of HRV signals
and were able to correctly classify (wake, light sleep,
deep sleep and REM sleep) with an accuracy of 57.7 %
using 0.5-minute epochs separated from 18 overnight
PSG recordings. Carskadon et al. [I9], explored the
application of the Res signal variability in Wake and
Sleep Stages in children. They noticed that the respi-
ration rate and its regularity dropped in NREM Sleep
compared to Wake State. Along the same line of work,
Miyata et al. initially created surrogate data from raw
Res signals as a linear stochastic time series so that
the Fourier transform of the surrogate data would be
the same as that of the raw Res signal. In their work,
they computed the correlation dimensions of the orig-
inal and the surrogate Res signals and discovered that
there was a considerable difference between these val-
ues. This further proved that Res signals were gener-
ated from a nonlinear underlying system [20]. Moti-
vated by these findings, a number of nonlinear tech-
niques have been used in sleep analysis based on car-
diorespiratory signals alone. For example, the signif-
icance of using approximate entropy of Res signals in
Wake and Sleep Stages has been researched [2I]. Hav-
ing nonlinear characteristics does not generally lead to
the conclusion that the signal exhibits fractal charac-
teristics. Some studies, however, have maintained that
Res signals could manifest fractal characteristics [21],
[22], [23] and [24]. Although a growing body of re-
search has demonstrated that cardiorespiratory signals
play a pivotal role in automatic sleep staging, more
studies and extensive research are required to establish
that cardiorespiratory signals could be reliably used to
perform automatic sleep staging. The literature shows
that a large number of the recent investigations con-
ducted on automatic sleep staging based on cardiores-
piratory signals just separate two stages of sleep [13],
[14], [15], [16] and [I7]. Moreover, as no previous stud-
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ies have compared the results of automatic sleep stag-
ing based on EEG and cardiorespiratory signals, we are
highly motivated to perform such an exploration and
attempt to fill this gap.

In a previous work [25], we evaluated the utility of
ECG as well as the combination of ECG and Res sig-
nals in automatic sleep staging based on 5-min (long)
epochs. It was observed that acceptable discrimina-
tive capacity could be achieved when features were ex-
tracted from these long segments. As the standard
epoch length for sleep scoring is 0.5-minute, it seemed
natural to extend the previous study and use the avail-
able long segments to investigate the efficacy of stan-
dard epochs in automatic sleep staging. Since standard
epochs from Stage 1 were also available in the database
(continuous long segments for this Sleep Stage were not
available), we were able to include Stage 1 in automatic
sleep staging in our current study.

In this investigation, automatic sleep staging was
performed as follows:

e by using EEG signal features,
e by combining HRV and EDR signal features,
e by combining HRV and Res signals features.

The feature vectors for each approach were ex-
tracted from standard epochs of sleep data by time-
domain, frequency-domain, time-frequency, and non-
linear methods and then optimized by using the SVM-
RFE method. A SVM classifier was then used to per-
form classification. The results of automatic sleep stag-
ing in this study (standard epochs) were compared with
those of our previous research, in which features were
extracted from long epochs of cardiorespiratory signals
[25]. Moreover, automatic sleep staging based on car-
diorespiratory signals in the presence of some artifacts
(like bigeminy in ECG signals) was explored.

2. Materials and Methods

Figure[I]shows the block diagram of the algorithm used
in this study. First, HRV and EDR signals were ex-
tracted from ECG signals. Then, feature vectors were
extracted from EEG, ECG-derived, and Res signals.
Subsequently, the extracted feature vectors were opti-
mized by the SVM-RFE method. Finally, the classi-
fication of Wake and Sleep Stages was performed by
using:

¢ EEG,

e combined HRV and RS-EDR (ECG) as well,

e combined HRV and Res (Cardiorespiratory) sig-
nals.
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Fig. 1: Automatic sleep staging algorithm using EEG, ECG
and Res (thoracic excursion) signals.

SN

Feature set
selection by
using of SVM-RFE

i

These 3 states are represented by three switches.

2.1. Polysomnographic Data

The Sleep Heart Health Study (SHHS) database was
used to provide the sleep data for this investigation
[26]. Subjects who participated in the acquisition of
data for this database did not use beta-blockers, alpha-
blockers or inhibitors. In this database, EEG signals
are sampled at a sampling rate of F's = 125 Hz, ECG
signals at a rate of 250 Hz and thoracic Res signals
are recorded by inductive plethysmography bands and
have a sampling rate of 10 Hz, all extracted from
31 overnight (nocturnal) polysomnographic recordings
from men and women (age > 40). Sleep architecture
for these data was determined in each subject accord-
ing to the Rechtschaffen and Kales (R&K) criteria on
standard epochs [I]. Generally, atrial fibrillation fre-
quently happens in patients with sleep apnea [27], [28],
[29], [30], [31] and [32]. In our study, the recordings
were selected by considering a Respiratory Disturbance
Index 3 Percent (RDI3P ) < 5 to have near-normal
characteristics. Therefore, we assumed there were no
atrial fibrillations in our database. Regarding the anal-
ysis of HRV, it has been suggested to use 5-minute ECG
signals to perform a "short-term" HRV analysis [33].

Table [2| shows the number of long epochs of Wake
and different Sleep Stages except Stage 1 and stan-
dard epochs from Wake and all Sleep Stages for all
recordings. First, for each recording, continuous parts
of EEG, ECG and Res signals in each sleep cycle were
separated and then, long segments of different Sleep
Stages were selected manually. Some parts of the data
(from the end segments of each cycle) were not contin-
uous H5-minute segments.

Typically about 50-60 % of the total duration of
sleep is spent in Light Sleep, 1520 % in Deep Sleep,
20-25 % in REM Sleep, and 5 % or less in Wake [34]. In
the database, Wake times records are much more than
5 % but we considered just relaxed Wake or the total
time between sleep onset and final wake-up. Therefore,
we included a small part of the Wake data (8.11 % of
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the total data for this stage), which happens during
sleep times. As there were no continuous long (5-min)
epochs available for Stage 1 in the database, we could
not include this sleep stage in our previous study [25].

However, when we carried out the current investi-
gation, we were able to make use of the 0.5-minute
segments of the cardiorespiratory signals during Stage
1, for further analysis. All of the existing continuous
long segments in the database were used in this study.
Overall, 113.49 hours (59.45 %) out of the 190.88 hours
of sleep data available were used, as the remaining
data were not continuous long segments during differ-
ent Sleep Stages. In summary, 84.73 % of Stage 1,
55.9 % of Stage 2, 47.33 % of SWS (Slow Wave Sleep)
and 71.4 % of REM Sleep data were used in this inves-
tigation.

Tab. 1: The number of 5-minute (long) and 0.5-minute (stan-
dard) epochs of EEG, ECG and Res signals in the Wake
and Sleep Stages for 31 subjects.

The number Remaining Total number
of clean number of of 0.5-min
5-min (long) | 5-min (long) (standard)
Epochs Epochs Epochs
Wake 79 19 790-+190
Sleep
Stagel ) . 953
Sleep 434 239 434042390
Stage2
SWS 185 16 1850-+160
REM 259 131 2590+1310
Sleep
Total 957 405 14573

As the main goal of this study was to perform the
comparative utility and analysis of EEG and cardiores-
piratory signals in automatic sleep staging, we excluded
continuous long segments polluted with artifacts in the
first part of the study so that the results would be in-
dependent of artifacts. For example, continuous long
segments with bigeminy were not used. The algorithm
was tested on the remaining continuous long segments.
It is important to note that in the selection of contin-
uous long segments, there were still transition points
between Sleep Stages, as some of these segments be-
longed to the beginning and the end portions of each
sleep cycle.

2.2. Feature Extraction

As mentioned above, we investigated automatic sleep
staging by applying a variety of advanced digital pro-
cessing methods to EEG, ECG, and Res signals to pre-
process and analyze these signals. Then we extracted
different sets of features from EEG, ECG (HRV, EDR)
and Res (thoracic excursion) signals, the details of
which are presented in the following sections.
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1) Feature Extraction from EEG Signals

The 0.5-minute (standard) epochs of electro-
encephalographic signals were acquired from EEG
channels C3-A2 and were used for feature extraction.
These signals were first normalized based on their
means and standard deviations for each subject. They
were then filtered by an 8th order elliptic band pass
filter with cutoff frequencies of 0.5 and 40 Hz, and
subsequently 5-feature sets (a total of 34 features)
were extracted from these data.

Time-Frequency Features

The Daubechies10 (db10) mother wavelet was used for
analyzing the EEG signals. A Wavelet Packet Trans-
form (WPT) with 7 levels was applied and the fre-
quency domain information of the following 6 bands
was selected.

e {0.45—3.9}, Delta, coefficient =
= [Ca2, Ca0, C1s].

Wayvelet

{3.9 — 7.8}, Theta, Wavelet coefficient = Cy4.

{7.8 = 11.7}, Alpha, Wavelet coefficient = Cys.

{11.7 — 15.6}, Spindle, Wavelet coefficient = Cy;.

{15.6 — 23.4}, Betal, Wavelet coefficient = Cy.

Wavelet coefficient =

{23.4—39.05}, Beta2,
- [0107 Cll]~

Figure [2| show the decomposition of the EEG signals
by using Wavelet Packet Transform (WPT) at 7 levels.

EEG Signal (f; = 125)
|
C G
Cs Cs Cs Ce
G Cs | Cs Cyp | | Cu  Cp |
Cua| [Cis Cusl

Fig. 2: Decomposition of EEG signals by using Wavelet Packet
Transform (WPT) of 7 levels.

In general, the wavelet decomposition of a given sig-
nal x(t) is presented by:

'S N %S
2t) = > Cngeni®)+ D> Y disthi(t). (1)
k=—o00 j=1k=—0c0
In wavelet decomposition, Parseval’s theorem relates
the energy of the signal x(t) to the energy in each one
of the components and their wavelet coefficients, pro-
vided that the scaling functions (¢(t)) and the wavelets
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(1(t)) form an orthonormal basis [35]. Parseval’s theo-
rem for discrete wavelet transform is given by Eq. :

e N 0o
E= Z c?\,)k—i—z Z d?)k.

k=—o0 j=lk=—00

(2)

Subsequently, Shannon entropy in these frequency
bands was calculated from wavelet coefficients in stan-
dard epochs of EEG signals using Eq. below where
C'(i)s represent wavelet coefficients in each frequency
band:
en = ¥ p()og,p(i),
9
p(i) = S0
> C(j)

3)

Next, the following features were calculated for the
frequency bands 1 to 6, which were then used to rep-
resent the time-frequency distribution of the EEG sig-
nals:

e Mean quadratic value or Energy of Wavelet
Packet (WP) coefficients for each of the 6 bands
(F1,Es, ..., Eg),

e Total Energy (Er),
e Ratio of different Energy values (Es, Ey, E1),

e Shannon Entropy of wavelet packet (WP) co-
efficients for each of the 6 bands (Entropyii,
Entropyis, . .., Entropyig)

6

E7 = > E; — The total Energy of all 6 bands,
i=1

Eg = E3/(E1 + EQ) — Alpha / (Delta + Theta),

Eg9 = E1/(E2 + E3) —Delta / (Theta + Alpha),

E190 = Eo/(E1 + Es) —Theta / (Delta + Alpha).

Frequency-Domain and Time-Domain Features

Frequency-domain and time-domain features included:
the relative spectral energy in 6 frequency bands, the
power value and frequency related to the peak point
of the power spectrum, the harmonic parameters and
Hjorth parameters, as well as the mean absolute value
of EEG amplitude, which will be defined in the fol-
lowing section. In order to extract all these features
(except the mean absolute value of EEG amplitude),
it was necessary to calculate the power spectrum of
the EEG signals. Among the many different methods
for the calculation of power spectrum, the AutoRegres-
sive (AR) modeling-based method was used as it offers
better accuracy, smoother spectra, and higher spec-
tral resolution compared to other methods. For the
selection of an appropriate order for the AR model,
the Minimum Description Length (MDL) and Akaike
methods were used. Here we implemented a 10*"-order
AR model for 10-second long EEG segments [36], [37]
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and [38]. The AR coeflicients were estimated by the
Burg method. These features were extracted in three
10-second segments in each standard epoch and the
average of three feature vectors formed the final one.

¢ Relative Spectral Energies

The power spectrum of EEG signals was first esti-
mated and the total power was then calculated in the
frequency interval 0.5-40 Hz. Then power in 6 fre-
quency bands, as described in section a (above), were
calculated and rounded up to the upper integer (Delta:
0.5-4Hz, Theta: 4-8 Hz, Alpha: 8-12 Hz, Spindle: 12—
16 Hz, Betal: 16—24 Hz, Beta2: 24-40 Hz). Finally,
these power values were normalized with respect to the
total power in order to obtain the relative spectral en-
ergies.

e Power Value and Frequency at Power Spec-
trum Peak

There were several peaks and valleys in the power
spectrum of the EEG signals. First, a peak with the
maximum power value was selected. Then, the peak
power value and the related frequency were selected as
2 features.

e Harmonic Parameters

Harmonic parameters are defined as follows:

fu
ff fep(f)df

fc = = 5 (4)
[ p(f)df
it
fa
J(f = fo)?p(f)df
fo= | : (5)
[ p(f)df
1
pr. = p(fe). (6)

In Eq. , Eq. , and Eq. (@, p(f) is signal power
spectrum, and f7, and fg are minimum and maximum
frequencies, respectively. The f(c) and f(o) in Eq.
and Eq. are similar to normalized values of mean
frequency and standard deviation of frequency.

e Hjorth Parameters

The n-order spectral moment is defined in Eq. (7))

o0

%:/@mwmw

— 00

(7)
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where p(f) is the power spectrum. The power spec-
trum is the Fourier transform of the autocorrelation
function. In the following, R(7) is the autocorrelation
function, and R(0) is the variance of the signal:

R(1) = E[x(t) (t+T)]
R( ) = E [z(t)?] = o3,
:_f p(f)el2I7df, (8)

= ] o(0df =ao

Therefore, ag is the signal’s variance, ao is the vari-
ance of the derivative of the signal, and a4 is the vari-
ance of the second derivative of the signal. In addition,
there is a relationship between the signal and its spec-
tral moment: as, = o2. Based on these spectral mo-
ments, Hjorth parameters were calculated as follows:

9)

Activity = a9 = 0(2),

a9 1/2 g1
Mobility = {] =L
ao g0

1/2
Complexity = K%) _ (%)} _
2 271/2 (11)
_ o2 (o1
(=)~ ()]
In these equations, all a parameters were first esti-

mated by Eq. 7 and then Hjorth parameters were
calculated:

(10)

fi=fL
an =Y (20£:)*p(fi)AS.

fH

(12)

As sleep EEG is a nonstationary signal, its spectral
moments are variable with time. Therefore, these fea-
tures can be useful in sleep EEG analysis [37], [38] and
[39].

e Mean Absolute Value of EEG Signal Amplitude

The amplitudes of EEG signals are different in Wake
and various Sleep Stages. For example, the amplitude
of these signals increases in Deep Sleep and decreases
in REM Sleep. Therefore, the mean absolute value of
the EEG signal amplitude was considered as a feature
for further analysis.

Nonlinear Features

The nonlinear dynamic features included DFA-based
features and entropy measures. The DFA-based fea-
ture extraction consisted of five steps. First, the profile
of a zero-mean normalized time series of length N was

determined: _
V(i)=Y . (13)
k=1
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Then, the profile was divided into N,, = N/n non-
overlapping segments. Subsequently, a local trend for
each segment of the data was calculated (by using a
first-degree polynomial) and then subtracted from the
profile:

Zn(]) = Y(]) - Pn(jas)a
s=1,2,..., Ny,

j=[(s=1n+1:sn].

(14)

Afterwards, the variance of the detrended time series
Z,(j) was calculated for each segment:

sn

>

k=(s—1)n+1

Fj(s) = Zy (k). (15)

Finally, the square root of the average over all N,
segments was calculated to obtain the DFA fluctuation
function as follows:

1/2
(16)

For calculation of « feature of the DFA in standard
epochs of EEG signals, 30 values for n in the interval
{4.30 x fs(3750)} were considered [40]. The value of
a was then calculated as the slope of the (logF(n))
versus log(n) for different scale values n:

ApEn(m, T, N) = @m(r) - (pm-&-l(r),
(r) = —(m—1)7]*
@ (J)\[_(TL]YUT( 1)7] (17)
; InC?"(r),
where:
G = 5= (m— 1)1’ (18)

B; = number of jsuchthatd|X;, X;| <.

In the above equations (X;, X;) are m-dimensional
pattern vectors, whose components are time-delayed
versions of the elements in the original time series with
delay 7, a multiple of the sampling period, as follows:

Xi = (Xi, Xir, Xigor, oo Xig (m—1)r)s
Xj = (X, Xjir, Xjvor, - Xjr(m-1)r),
X, € R™ X, € R™,

(19)

and d|X;, X;| is a measure of the distance between X
and X;. For large values of N, the ApEn is given by:

=[N —m7]! Niw —In (gl) (20)

i=1

ApEn(m,r, N)

where A; is the number of X/s within tolerance r of
Xs for the (m + 1) - dimensional pattern vector and
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B; is the number of X/s with tolerance r of X/s in the
m-dimensional pattern vector.

Sample Entropy (SampEn) is another measure of
complexity [41], which is very similar to ApEn. The
main difference between these two measures is how self-
counting is handled in their computation. In ApEn
calculation, self-counting is included at each iteration
to prevent computing the natural logarithm of zero.
However, in the calculation of SampFEn, the natural
logarithm is computed once and self-counting is ex-
cluded by requiring that ¢ # j in Eq. . SampEn
is computed by modifying the ApEn formula given in

Eq. to:

N—mT
A;
S En( N) = -1 é__l =1
ampEn(m,r,N) = ~lnw = —Ing="
B;

(21)

The calculation of ApEn and SampEn of EEG sig-
nals requires a priori specification of some unknown
parameters as: m, the Embedding Dimension (ED)—r,
a tolerance value and 7, the time delay. For our inves-
tigation the following values were selected: m = 2,
r = 0.5 times the standard deviation of the data [21],
[41] and 7 = 11 samples (0.09 second), [21I]. The time
delay was determined as the lag at the point for which
the autocorrelation function of the signal was near zero
for the first time.

2) Feature Extraction from HRYV,
ECG-Derived Respiration (EDR) and
Res Signals

In this section we describe the processing of the ECG
and Res signals listed in Tab. [2] First, HRV and RS-
EDR signals were derived from ECG signals and then
features were extracted.

HRV and ECG-Derived Respiration (EDR) Sig-
nals

The selected ECG segments were filtered by using
a FIR band pass filter with low and high cut-off fre-
quencies of 8 and 20 Hz, respectively [42]. In order
to extract HRV signals, QRS complexes were first de-
tected by using an Enhanced Hilbert Transform (EHT)
algorithm [43] and then were assessed manually for cor-
recting the missing beats. The details of our HRV sig-
nal derivation algorithm from ECG segments are re-
ported elsewhere [44].

For the extraction of the EDR signal, some studies
in the literature have used 2 leads of ECG signals [45],
[46], [47] and [48], while others took advantage of more
than 2 leads [46]. In our investigation, however, we
made use of ECG lead II alone as this lead seems to
be very popular in the most recent literature [50], [51],
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52], 53], [54], [55], [56], [57] and [58]. Therefore, the
EDR signals were extracted from lead II ECG signals
by using the RSampl or RS-EDR method [56]. The
procedure for the extraction of RS-EDR signal from
ECG segments is explained in detail in our previous
work [25].

Feature Extraction from HRV, Res and RS-
EDR Signals

e HRV Signals

A 4-feature set was extracted from the HRV signals
using standard epochs as follows:

e The time-domain features including: the median,
the Inter-Quartile Range (IQR), the Mean Abso-
lute Difference (MAD), the mean, the standard
deviation and the range.

e The nonlinear dynamics features including: DFA-
based feature a, which represents the slope of the
logF'(n) versus log(n) in the range 10 < n < 30
(before DFA feature extraction, a 1 Hz re-sampling
was applied to HRV data) and entropy measures
(Shannon entropy, ApEn and SampEn).

e DWT-based features including: the normalized
values of energy in the VLF, LF, and HF bands
(Waves 1:3), the energies in LF/HF (Wave 4),
Shannon entropy in VLF, LF, and HF bands
(Waves 5:7), the ratio of entropies in the LF and
HF bands (Wave 8).

e The Empirical Mode Decomposition-based (EMD-
based) features consisting of: normalized values of
energy in the VLF, LF, and HF bands computed
by the Hilbert energy spectrum (EMD 1:3), the
ratio of energies in the LF and HF bands (EMD
4), harmonic parameters such as the central fre-
quency, the deviation of central frequency and the
energy in central frequency were extracted from
the Hilbert amplitude spectrum (EMD 5-7), ApEn
(EMD 8) and SampEn (EMD 9) were calculated
from the most significant IMF of the standard
epochs. To calculate ApEn and SampEn from
HRV signals, m = 2, r = 0.2 times the standard
deviation of the data and 7 = 1 sample were se-
lected [59].

When exploring the utility of the DFA and EMD
methods in feature extraction from HRV signals using
long and standard epochs, we had to make some pro-
visions in our approach. In long epochs of HRV we
extracted 10 Intrinsic Mode Functions (IMFs) by the
EMD method and the ApEn and SampEn from the
4 most important IMFs were calculated, while in stan-
dard epochs we could only extract 2 IMFs and the most
important IMF was used in calculation of entropies.
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When using the DFA method here, as compared to
our previous work [44], we only extracted « from stan-
dard epochs of HRV signals, while for long epochs, both
ay and ag were extracted. The n values in Eq. ,

Eq. , Eq. and Eq. , were considered as
n = 10 : 30 for oy and n = 60 : 300 for .

In summary, 34 features were extracted from long
epochs, and 27 features from standard epochs of HRV
signals. Also, 11 features were extracted from Res sig-
nals, which will be explained in the following sections.
Automatic sleep staging was then performed using fea-
tures extracted from a combination of HRV and Res
signals in standard and long epoch lengths.

e Res (Thoracic Respiratory) Signals

For this investigation, the Res signals (thoracic ex-
cursion) recorded by inductive plethysmography bands
and sampled at 10 Hz were used. First, Res signals
were filtered by a 10" order Butterworth low pass filter
with a 0.8 Hz cut-off frequency in order to remove high
frequency noise and variations above the respiratory
frequency. Then, a 6-point moving average filtering
method was used to smooth out the Res signals and
to remove additional peaks. Finally, since the signal
was not calibrated in terms of absolute Tidal Volume
(TV), we normalized it for each subject and consid-
ered only relative differences. The thoracic Res signals
were normalized by first detecting the turning points
and then calculating the differences between sequential
peaks and troughs. The median peak-to-trough am-
plitude over the entire record was subsequently deter-
mined and the signal was normalized by dividing into
this value, resulting in median peak-to-trough ampli-
tude equal to unity [39]. The median was more robust
to outliers and did not move (change) unless more than
half of the signal was contaminated with noise, which
in the plethysmogram can be extreme and create very
large peak-to-trough values, and can skew the mean.

The steps involved for feature extraction from 0.5-
minute epochs of Res signals in Wake and different
Sleep Stages were as follows. First, peaks and valleys
of thoracic Res signals were detected. Then the missed
peaks were corrected by the procedure explained in our
previous work [25]. Finally, the TV and the Respira-
tion Rate (ResR) were calculated as the amplitude dif-
ference between a successive peak and valley, and the
number of breaths per minute, respectively. Typically,
the Tidal Volume is the volume of air exhaled during
a breath. Therefore, the TV by definition is the dif-
ference between the maximum and minimum volume
or the integral of the area under the expiratory flow.
ResR is the breathing frequency per minute. In this
study, the mean, standard deviation and coefficient of
variation (standard deviation - 100/mean) of the TV
and ResR were computed as features. Other features,
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such as ApEn, SampEn and Shannon Entropy, were
extracted from Res signals. We chose m = 2, r = 0.2
times the standard deviation of the data, and 7 = 11
sample (1.1 second), [I8] for this purpose. Finally, the
peak frequency of Res signals and the power value in
peak frequency were extracted. The Power Spectral
Densities (PSDs) of Res signals were estimated by us-
ing the nonparametric method and a 1024-point FFT
(Fast Fourier Transform). Totally, 11 features were
extracted from the 0.5-minute epochs of thoracic Res
signals.

e RS-EDR Signals

The procedure for the feature extraction from RS-
EDR signals was the same as that used for Res sig-
nals. First, peaks and valleys were detected by the
method explained in our previous work [25]. Then, the
mean, standard deviation and coefficient of the varia-
tion of the TV and ResR were computed. The Shannon
Entropy, ApEn, SampEn, peak frequency and power
value at peak frequency were calculated from RS-EDR
signals too. Therefore, the feature extraction proce-
dure in 0.5-minute epochs of Res and RS-EDR signals
was the same as the feature extraction procedure in
5-minute epochs.

Classification

A Support Vector Machine (SVM) classifier was used
for automatic sleep staging. The SVM separating hy-
perplane was calculated by solving the quadratic opti-
mization problem. The Radial Basis Function (RBF)

kernel (k(m, y) = e—"YHﬂ”—i‘/”d)7 and the one-against-one
method were used for the SVM multi-class classifica-

tion. The details of classifier training and test proce-
dure are reported in our previous work [25].

The dataset was divided into the training and test
sets. It can be seen in Tab. [2] that the Wake Stage has
the minimum number of epochs. In staging 0.5-minute
epochs, 30 % of the clean epochs in the Wake Stage
(0.30 - 790 = 237) were randomly selected for training.
In order to get comparable results for all Sleep Stages,
equal number of epochs in other Stages was used for
training. In staging 5, 4, 3, 2, 1-minute epochs, 80 %
of clean epochs in each Stage, were randomly used for
training. The performance of the classifier was tested
on the remaining epochs in each Stage.

The SVM Recursive Feature Elimination (RFE)
method was used for feature selection. This method
was developed by Guyon, et al. and has been used
in gene selection for cancer classification [6I]. In the
SVM-RFE method, the effect of removing a feature
on an objective function is used as a ranking crite-
rion. Guyon and co-workers used the margin [61] or
Total Error Rate (TER), [16] as objective function. In
our study here, Correct Classification Ratio (CCR) was
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used as ranking criterion. We optimized 3 sets of fea-
tures, which were extracted from 0.5-minute epochs of:

o EEG (34 features),

e HRV and Res signals (38 features with 27 features
from HRV and 11 from Res signals),

e combined HRV and RS-EDR signals (38 features
with 27 features from HRV and 11 from RS-EDR).

In order to investigate automatic sleep staging by
the combination of HRV and Res signals in different
epoch lengths, different feature sets were optimized.

3. Results

In the first phase of this study, we automatically classi-
fied the Wake, Stage 1, Stage 2, SWS and REM Sleep
by using EEG, combined HRV and RS-EDR, as well as
combined HRV and Res features. Feature vectors were
extracted from 0.5-minute (standard) epochs. We used
a SVM classifier and the optimal parameters for this
classifier were found by the procedure described in the
Classification section. The SVM-RFE ranking method
was applied to 34 features extracted from EEG signals.
The best results were obtained when using 25 features.

The discriminative capacity (classification results)
for the best 25 features derived from the EEG signals
is (are) presented in Tab.

Tab. 2: Automatic Sleep Staging using EEG signals. Results
are reported for optimum C = 8 and ¢ = 8 (y =
0.0156). In addition CCR1 (on training data) = 0.945
and CCR2 (on test data) = 0.9228 (25 best features se-
lected), features were extracted from 0.5-minute (stan-
dard) epochs.

Sleep Accuracy | Specificity | Sensitivity
Stages
‘Wake 98.99 99.52 90.59
Stage 1 99.97 100 99.72
Stage 2 90.88 94.32 86.49
SWS 97.42 97.49 97.14
REM 92.17 93.77 87.42
Total on
test data 95.87 97.41 89.83
Total on 97.79 98.62 94.51
training data

Similarly, the SVM-RFE ranking method was ap-
plied to the 38 features (extracted from HRV and RS-
EDR signals). The best results were obtained when
using 24 features.

The classification results for the best 24 features de-
rived from the HRV and RS-EDR signals are presented
in Tab. @]

Finally, the SVM-RFE ranking method was applied
to the 38 features (extracted from HRV and Res sig-
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Tab. 3: Automatic Sleep Staging using the combination of HRV
and RS-EDR signals. Results are reported for optimum
C = 8192 and 0 = 64 (y = 0.00024). In addition
CCR1 (on training data) = 0.63 and CCR2 (on test
data) = 0.539 (24 best features selected), features were
extracted in 0.5-minute (standard) epochs.
Sleep Accuracy | Specificity | Sensitivity
Stages
‘Wake 85.9 87.51 60.39
Stage 1 95.15 95.87 86.59
Stage 2 60.45 83.34 31.24
SWS 67.30 74.13 43.14
REM 71.31 79.02 48.04
Total on
test data 76.42 85.09 43.59
Total on 84.79 90.42 63.03
training data

nals). The best results were obtained when using 22
features.

The classification results for the best 22 features de-
rived from the HRV and Res signals are presented in
Tab. Bl

Tab. 4: Automatic Sleep Staging using the combination of HRV
and Res signals. Results are reported for optimum
C =32 and o0 = 16 (y = 0.0039). In addition CCR1
(on training data) = 0.6464 and CCR2 (on test data)
= 0.5723. (22 best features selected), features were ex-
tracted in 0.5-minute (standard) epochs.
Sleep Accuracy | Specificity | Sensitivity
Stages
Wake 85.63 87.74 52.26
Stage 1 95.32 96.31 83.37
Stage 2 63.92 85.48 36.41
SWS 71.98 76.46 55.42
REM 77.53 83.89 58.64
Total on
test data 79.14 86.83 49.83
Total on 85.41 90.84 64.64
training data

In our previous work, we performed automatic sleep
staging to distinguish between Wake, Stage 2, SWS
and REM Sleep by using combined HRV and RS-EDR,
as well as combined HRV and Res features based on
feature vectors extracted from 5-minute (long) epochs.
The results are presented here for comparison. The
classification results for the best 35 features derived
from the combination of HRV and RS-EDR signals are
presented in Tab. [6] [25].

Similarly, the classification results for the best
27 features derived from the combined HRV and tho-
racic Res signals are presented in Tab. [7] [25].

Figure [3| shows the CCR values versus the number
of best features in a decreasing fashion (from n fea-
tures to 1 feature) in classification by EEG signals
(in 0.5-minute), HRV4+EDR signals (in 0.5-minute),
HRV-+RES signals (in 0.5-minute), HRV+EDR signals
(in 5-minute) and HRV+RES signals (in 5-minute). In
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Tab. 5: Automatic Sleep Staging by using the combination of
HRYV and RS-EDR signals. Results are reported for op-
timum C = 2048 and o = 64 (y = 0.00024) when using
the 35 best features. In addition, CCR1 (on training
data) = 0.73 and CCR2 (on test data) = 0.7, features
were extracted in 5-minute (long) epochs [25].

Sleep [P cpes
Stages Accuracy | Specificity | Sensitivity
‘Wake 92.70 93.18 87.50
Stage 2 75.00 82.85 65.51
SWS 83.85 89.67 59.45
REM 83.85 88.57 71.15
Total on
test data 83.85 89.23 67.7
Total on 84.11 89.41 68.23
training data

Tab. 6: Automatic Sleep Staging by using the combination of
HRYV and Res signals. Results are reported for optimum
C =8 and 0 = 8 (y = 0.0156) when using the 27
best features. In addition, CCR1 (on training data)
=0.83 and CCR2 (on test data) = 0.81, features were
extracted in 5-minute (long) epochs [25].
Sleep Accuracy | Specificity | Sensitivity
Stages
Wake 95.83 96.59 87.50
Stage 2 81.25 87.61 73.56
SWS 89.06 91.61 78.37
REM 91.14 93.57 84.61
Total on
test data 89.32 92.88 78.64
Total on 90.58 93.72 81.17
training data

classification by different signals, the best outcomes
(using the best combination of features) are inserted
in the diagram.

Finally, the results of sleep staging based on 0.5-
minute epochs including both clean test epochs and
epochs polluted with artifacts of EEG signals are
shown in Tab.

Tab. 7: Automatic Sleep Staging using EEG signals on all 0.5-
minute epochs (all data in Tab. |2 except training part
of artifact free data). Results are reported for optimum
C =8 and 0 = 8 (v = 0.0156), and the best combi-
nation of 25 features, CCR1 (on training data) = 0.94
and CCR2 (on test data) = 0.85.

1 T T T T
IR ...,

~09r x:13 S x: 27 |
5 ¥:0.9201.9228) 1y gg101
Z08F ot I 1
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Fig. 3: From right to left, each point in this diagram is the best
possible subset (which maximizes CCR) of m features
(m is changed from n to 1). When a feature is removed,
all possible n-1 combinations of n remaining features is
checked, it means that the removed features in previous
steps cannot be tested in the subsequent combinations.
The best result in 0.5-min was obtained by the combina-
tion of 25 features for EEG signal, 24 features for HRV
+ EDR signals, and 22 features for HRV + RES signals.
For comparison, in 5-min epochs, the best results was
obtained by the combination of 35 features for HRV +
EDR signals, and 27 features for HRV + RES signals.

0.85). Our previous observations revealed that in
automatic sleep staging by cardiorespiratory signals
the best result was obtained when feature vec-
tors were extracted from 5-minute epochs.  The
results based on the HRV + Res signals using
5-minute epoch lengths (clean test epochs and all arte-
factual epochs) are presented in Tab. 8] In comparison
with the results in Tab. [7] we observe that the Accu-
racy decreased from 89.32 % to 81.1 % (CCR decreased
from 0.81 to 0.63).

Tab. 8: Automatic Sleep Staging by using the combination of
HRV and Res signals on all 5-minute epochs (all data
in Tab. |2| except training part of artifact free data).
Results are reported for optimum C = 8 and o = 8

Sleep Accurac Specificit Sensitivit (v = 0.0156) and the best combination of 27 features,
Stages y p y Y CCR1 (on training data) = 0.83 and CCR2 (on test
‘Wake 95.93 99.47 69.58 data) = 0.63.
Stage 1 99.32 100 99.72
Stage 2 86.28 97.57 80.07 Sleep co s e
SWS 91,38 99.32 965 Stages Accuracy | Specificity | Sensitivity
REM 88.2 98.73 79.68 Wake 87.7 90.2 48.5
Total on Stage 2 68.3 81.5 57.3
test data 92.8 95.5 82.6 SWS 84.9 86.7 66
trgﬁitil e 97.7 98.61 94.51 TfiElM 835 884 726
g€ ora’ on 81.1 87.4 62.3
test data
Total on
Comparing the data in Tab. [§] and Tab. [B] shows | training data 90.5 93.72 81.17
that the Accuracy value decreased from 95.87 %
to 92.8 % (CCR value decreased from 0.92 to
(© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 468
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4. Discussion

The main objective of this study was to perform a com-
parative analysis of the discriminative capacity of EEG
and cardiorespiratory signals in automatic sleep stag-
ing. Therefore, we investigated a number of related
research questions. Firstly, we probed how closely
the sleep staging results based on EEG signals com-
pared with the results when discriminative features
were solely derived from cardiorespiratory signals in
standard epochs. These findings were compared with
those achieved by using cardiorespiratory signals in
long epochs. Secondly, we investigated automatic sleep
staging by cardiorespiratory signals in the presence of
some artifacts (like bigeminy) in ECG signals.

The feature vectors were extracted intelligently to
appropriately satisfy the requirements of a research
study focused on performing automatic sleep staging.
Our careful review of the sleep physiology literature
revealed that heart and respiration rates varied con-
siderably during Wake and different Sleep Stages. The
time-domain and time-frequency methods were used
for measuring the variations of the heart rate in Wake
and different Sleep Stages [9], [33] and [62] as well as
their manifestations in the Autonomic Nervous Sys-
tem (ANS) activity. In addition, some of the features
were extracted by nonlinear dynamics system analysis
methods. This approach seemed plausible, as it has
been shown in the literature that both the linear and
nonlinear characteristics of physiologic systems like the
one underlying the generation of HRV signals should be
considered simultaneously [63]. It should be mentioned
that the EMD method was used for the extraction of
some new features in our investigation. This method is
more compatible with nonlinear characteristics of phys-
iological systems than the DWT (and it does not have
the limitation of having to choose the mother wavelet).
Ordinarily, the respiration rate and depth are different
in Wake and Sleep Stages. These differences were mea-
sured by the calculation of the mean, standard devia-
tion, and the Coefficient of Variation (COV) of Res-
piration Rate and Tidal Volume. Calculating entropy
and deploying the DFA method enabled us to evalu-
ate the regularity and fractal characteristics of Respi-
ratory Signals. For performing automatic sleep staging
based on EEG signals, we extracted different features
to analyze the amplitude and frequency variability and
nonlinear characteristics of these signals.

Different sets of features were extracted from HRV,
RS-EDR, Thoracic Respiratory and EEG signals. The
significance of most of these features was evaluated by
applying popular statistical methods (ANOVA and t-
test) and was reported in our previous works [25] and
[44]. The SVM-RFE method was used for the selec-
tion of sub- optimal feature sets and the classification
of Sleep Stages was achieved by using a SVM classi-
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fier. Automatic sleep staging was performed based on
features extracted from 0.5-minute (standard) epochs
of EEG signals and by combining features from HRV
and Respiratory (reference or RS-EDR) signals derived
from both 0.5-minute (standard) and 5-minute (long)
epochs of these cardiorespiratory signals. In automatic
sleep staging of Wake, Stage 1, Stage 2, SWS and REM
Sleep we were able to generate the following results:

e an accuracy of 95.89 % with a CCR = 0.92 when
we used 0.5-minute epochs of EEG signals,

e an accuracy of 76.02 % with a CCR = 0.54, when
features were derived from standard epoch lengths
of a HRV + RS-EDR signals,

e an accuracy of 78.87 % with a CCR = 0.57
when features were extracted from standard epoch
lengths of a combination of HRV + Res signals.

It should be pointed out that we used the same labels
in training for classifications based on the EEG, HRV +
RS-EDR, as well as HRV + Res signals. We also tested
our algorithm by using the same label of data samples
so that the results would be comparable. We achieved
excellent results by performing sleep staging using the
standard epoch length of EEG signals and showed that
cardiorespiratory signals would not produce acceptable
outcomes based on this short epoch length.

As HRV and Respiratory signals are signals with
slow dynamic and as “short-term“ HRV analysis re-
quires a recommended epoch length of 5 minutes [33]
to perform automatic sleep staging by cardiorespira-
tory signals, we also extracted feature vectors based on
5-minute epochs of these signals. With these feature
vectors we were able to distinguish among Wake, Stage
2, SWS and REM Sleep with the following results:

e an accuracy of 89.32 % with a CCR = 0.81 based
on HRV + Res signals,

e an accuracy of 83.85 % with a CCR = 0.7 by using
HRV + RS-EDR signals [25].

In summary, we observed that automatic sleep stag-
ing results when using 0.5-minute (standard) epochs
of EEG signals were comparable with results obtained
based on HRV -+ Res signals in 5-minute epochs. In
addition, sleep staging results based on HRV + RS-
EDR signals (or ECG signal alone) were also accept-
able when classification was done in 5-minute epochs.

It is important to emphasize that the above-
mentioned results were obtained when features were
extracted from artifact-free (clean) signals listed in
Tab. |2l However, when we applied our algorithm to the
entire 0.5-minute epochs of EEG data (both clean and
with artifact), to discriminate among Wake, Stage 1,
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Stage 2, SWS and REM Sleep Stages, the accuracy de-
creased from 95.8 % with a CCR = 0.92 to 92.8 % with
a CCR = 0.85. In distinguishing between Wake, Stage
2, SWS and REM Sleep, using all 5-minute epochs
(both clean and with artifact) based on HRV +Res
signals, the accuracy decreased from 89.3 % with a
CCR = 0.81 to 81.1 % with a CCR = 0.63. Therefore,
when the algorithm was applied to all epochs (clean
and artefactual), the reduction of the accuracy of au-
tomatic sleep staging by cardiorespiratory signals was
more pronounced than the case when noisy EEG sig-
nals were used. This happens due to the presence of
some artifacts (like bigeminy) in ECG signals.

5. Conclusion

In this study, we successfully applied a variety of fea-
ture extraction methods to derive discriminative and
informative features from EEG and cardiorespiratory
signals. Sub-optimal feature sets were found by the
SVM-RFE method and classified by using a SVM clas-
sifier. We observed that the EEG signals could produce
excellent outcomes in automatic sleep staging when
feature vectors were extracted from 0.5-minute (stan-
dard) epochs. We also made the general observation
that reasonably good results could be achieved when
sleep staging is performed based on features derived
from 5-minute epochs of the combination of HRV and
Res signals. Moreover, ECG signals alone could pro-
duce acceptable results (when feature vectors were ex-
tracted in 5-minute epochs). Therefore, the closer the
RS-EDR signals resembled the reference respiratory
signals, the better the results by ECG signals alone
became.

Here we strived to perform a comprehensive inves-
tigation into automatic sleep staging based on simul-
taneous analysis of EEG and cardiorespiratory signals.
We demonstrated that automatic classification of Wake
and different Sleep Stages is possible by extracting fea-
ture vectors from long epochs of cardiorespiratory sig-
nals alone. In addition, we observed that the presence
of some artifacts (like bigeminy) decreases the classifi-
cation results based on cardiorespiratory signals more
than those achieved from noisy EEG signals. We ex-
tracted features by using a combination of linear and
nonlinear methods. More features could be added to
these extracted features to improve the classification
results based on cardiorespiratory signals alone. For
example, recent research has shown that current algo-
rithms used to perform spectral analysis of HRV signals
are not able to completely separate the sympathetic
and parasympathetic components of the HRV signals
as manifested in the LF and HF bands [10], [33], [62]
and [64]. Recently a method called Principal Dynamic
Mode (PDM) analysis of HRV signals that allows more
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precise decomposition of the HRV signal spectral com-
ponents and hence complete separation of the sympa-
thetic and parasympathetic influences of the ANS ac-
tivity was presented in the literature [65]. In our future
work, we envision using the PDM approach in achiev-
ing more precise spectral analysis of the HRV signals
and investigating the variations of features extracted
from them in the Wake and Sleep Stages. Moreover, it
has been shown that cardiac and respiratory rhythms
could synchronize with different ratios. A pronounced
sleep-stage dependency has been observed with the de-
gree of synchronization: low during REM and Wake,
higher during Light Sleep, and most pronounced during
Deep Sleep [66] and [67]. These synchronization ratios
could serve as useful features and would inform our fu-
ture algorithm enhancements in performing automatic
sleep staging based on cardiorespiratory signals alone.
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