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Abstract. Here we present the evaluation results of
our novel noninvasive phonocardiographic-based fiber-
optic sensor for fetal Heart Rate (fHR) detection using
adaptive filtering and the NLMS Algorithm. The sen-
sor uses two interferometric probes encapsulated inside
a PolyDiMethylSiloxane (PDMS) polymer. Based on
real data acquired from pregnant women in a suitable
research laboratory environment, once they had given
their written informed consents, we created a simpli-
fied dynamic signal model of the distribution of mater-
nal and fetal heart sounds inside the maternal body.
Building upon this signal model, we verified the func-
tionality of our novel fiber-optic sensor and its asso-
ciated adaptive filtering system using the NLMS Algo-
rithm. The main reason why we chose this technology
to develop our system was that it allows monitoring the
fHR without exposing the fetus to any external energies
or radiation (in contrast to the ultrasound-based Car-
diotocography Method). We used objective criteria such
as: Signal to Noise Ratios: SNRin, SNRout and Per-
centage Root-mean-square Difference (PRD) for our
evaluations.
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1. Introduction

In this article, we report on the evaluation of a nonin-
vasive method for fetal Heart Rate (fHR) detection and
monitoring during gestation, labor, and delivery based
on fetal PhonoCardioGraphy (fPCG). Our proposed
method relies on the combined capabilities of fiber-
optic sensing and adaptive filtering (implementing
the Normalized Least Mean Square - NLMS - Algo-
rithm). In our recent work reported elsewhere [1] and
[2], we developed an adaptive system, which enabled
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us to measure the fetal Heart Rate (fHR) by means of
fPCG signal peak detection using the maternal abdom-
inal PhonoCardioGrams (aPCGs). We observed that
diagnostic-quality fPCG signals required for accurate
fHR detection are contaminated by an unwanted ma-
ternal component (the mPCG signals) in addition to
other technical and biological interferences. We showed
that as the spectral contents of the fPCG and mPCG
signals overlap in the frequency domain, common filter-
ing methods such as signal subtraction, linear filtering,
and others are ineffective in extracting reliable fHR in-
formation and therefore cannot be used.

Our recent research as well as others have also indi-
cated that Fiber-optic technologies such as Fiber Bragg
Gratings (FBGs) or interferometers are used increas-
ingly in many biomedical applications; see articles [3],
[4], [5], [6], [7], [8], [9], [10] and [11]. Building upon
these advancements, we developed our novel sensor
that uses two non-invasive interferometric probes en-
capsulated in a PolyDiMethylSiloxane (PDMS) poly-
mer with the designation Sylgard 184.

The well-established conventional Phonocardiogra-
phy is based on the scanning of acoustic signals by
means of a microphone placed on the thorax. As for
fetal Phonocardiography, the microphone is placed on
the maternal abdomen [12], [13] and [14].

Our solution described here is based on the scan-
ning of acoustic signals by means of two Mach-Zehnder
interferometric fiber-optic probes. The advantages of
these interferometers are their immunity to Electro-
Magnetic Interferences (EMI), and their ability to mea-
sure any changes in the optical path length (such as
the core refraction index, fiber length and the wave-
length used). Therefore, the smallest measurable fre-
quency due to any phenomena resulting in the change
of the above-mentioned physical properties is theoret-
ically unlimited [15] and [16].

To perform our system evaluations, we needed to use
synthetic data. For generating suitable synthetic sig-
nals, we conducted a set of measurements on pregnant
women in a suitable research laboratory environment
after obtaining their written consents. We then created
a simplified dynamic signal model for the distribution
of maternal and fetal heart sounds inside the maternal
body. Based upon this signal model, we generated syn-
thetic data with properties as close as possible to the
real data. The necessity to use synthetic data at this
stage of our research was further justified by consid-
ering the fact that our patent-pending interferometric
sensors have yet to be legislatively approved for clinical
testing on pregnant women. It is important to empha-
size that legislative regulations for use of new tech-
nology on pregnant women are extremely strict (as an
unborn fetus is critically sensitive to external energies

such as mechanical pressure, electromagnetic radiation,
change in temperature, and so on).

In current clinical practice, clinicians use either
ultrasound-based methods such as CardioTocoGraphy
(CTG), which measures the fetal heart rate along with
maternal uterine contractions, or fetal Echocardiogra-
phy (fECHO) to diagnose fetal congenital heart defects
from the 20th to the 23rd week of pregnancy [17] and
[18]. These sophisticated technologies are now integral
parts of routine modern obstetrics. It is important to
emphasize that the CTG technology has helped clini-
cians reduce the mortality rate of newborn babies dur-
ing delivery. In spite of this considerable impact, it is
generally recognized that this technology has some dis-
advantages such as high sensitivity to noise caused by
maternal movements and the need to frequently repo-
sition the ultrasound transducers. Also, this method is
not suitable for long-term continuous fetal heart rate
monitoring due to the potentially harmful influence of
ultrasonic radiation on the fetus.

Our method and system, once statistically and clini-
cally proven and validated, offer a number of advan-
tages (in contrast to the currently used ultrasound-
based CTG and other conventional methods), includ-
ing their applicability to continuous long-term fHR
monitoring without exposing the fetus to any radia-
tion as well as their compatibility with Magnetic Res-
onance Imaging (MRI) environments. The continuous
long-term monitoring capability of our system is highly
desirable, especially in those cases in which the preg-
nant woman faces a dangerous situation (such as after
an accident), and it becomes absolutely essential to
perform a time consuming MRI examination to ensure
that the unborn child is intact and safe. The other
specific advantage of our technology is that it can be
used in water deliveries.

2. Methods

2.1. Fetal Phonocardiography

Fetal PhonoCardioGraphy (fPCG) was discovered dur-
ing the 17th century by Kergardec, Marsac, and
Kennedy [19]. Although fPCG was discovered a very
long time ago, interest in this research area has only
grown over the past few years. This figure shows the
number of peer-reviewed articles that appear in the Sci-
ence Direct, the Institute of Electrical and Electronics
Engineers (IEEE) and the National Institute of Health
(PubMed) databases.

The PCG signal is composed of two main acoustic
components (the first heart sound S1 and second heart
sound S2), see Fig. 1, and two additional heart sounds
(S3 and S4). S1 is systolic and is connected with the
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closure of bicuspid and tricuspid valves at the begin-
ning of ventricular contraction. S2 is diastolic and is
produced by the closure of semilunar valves. The third
heart sound (S3) is pro-diastolic and appears when a
valve muscle quivers during the fast phase of blood flow
into the valve. The fourth heart sound (S4) is pre-
systolic and is a sign of the quivering of valve muscle
during systole in the atrium. The last two mentioned
heart sounds (S3 and S4) are not common for adults,
and their presence is a sign of cardiac insufficiency [20].

S1

1st cardiac sound
S2

2nd cardiac sound

PCG

S1 S1
S1 S2S2

Fig. 1: Basic components of PCG signals.

2.2. PCG-Based Fibre-Optic Sensor

Our fiber-optic sensor is encapsulated inside poly-
dimethylsiloxane [21], [22] and [23] and is comprised of
two Mach-Zehnder interferometric components formed
by 1×2 and 3×3 power couplers with an even split ra-
tio; see Fig. 2.

Fig. 2: Our noninvasive fiber-optic measurement probe.

The reference fiber is stored in a stable environment.
The output beams are recombined at a second 3×3 cou-
pler. The output signal is detected by photodetectors.
The resultant optical intensity after 3×3 coupler can
be described by the following Eq. (1).

In = An+Bn cos

[
φ(t) + φdrift(t) + (n− 1)

2π

3

]
, (1)

where n represents the coupler output index with a
value of 1, 2 or 3. The symbol An represents the mean
value of optical intensity (DC component). Symbol
Bn represents the optical intensity variation amplitude
depending on fringe visibility, φ(t) represents the signal
of interest, and φdrift(t) is a quasi-static phase shift
due to coupler properties. For the extraction of the

proper signal, it is necessary to use a demodulation
algorithm [24].

2.3. Implementation of the Adaptive
NLMS Algorithm

The measurands sensed by our interferometric sen-
sors generated the fetal heart rate information, which
was then fed into an adaptive stochastic system using
the Root Mean Square Error (RMSE) criterion. This
stochastic approach required a large number of mea-
surements to produce powerful statistics. This consid-
eration led to the utilization of the Normalized Least
Mean Square (NLMS) Algorithm, which is a repre-
sentative of basic stochastic gradient-based adaptation
methods; see articles [25] and [26].

The Normalized Least Mean Square (NLMS) Algo-
rithm is a variant of the Least Mean Square Algorithm.
The former is able to accelerate the convergence speed
with a reasonable computational cost and selects
a normalized step-size µn, which results in both
a stable and fast converging adaptation algorithm, see
[27] and [28]. Implementation of the NLMS Algorithm
can be summarized as follows:

BEGIN ~w(n=0)=~0
FOR (n=1,2,...,N):
y(n)=~wT(n)·~x(n)
e(n)=d(n)-y(n)
~w(n+1)=~w(n)+µ(n)·e(n)·~x(n).

The step-size µn can be described as follows Eq. (2).

µ(n) =
µ

δ + ~xT (n) · ~x(n)
. (2)

Finally, we obtain the following Eq. (3).

~w(n) = ~w(n− 1) + µ
e(n) · ~x(n)

δ + ~xT (n) · ~x(n)
, (3)

where µ ∈ (0, 2] and δ > 0. Parameter δ representsthe
regularization parameter (prevents the denominator of
Eq. (4) becoming zero).

3. Results

Our measurement system comprised of a novel fiber-
optic sensor and its associated adaptive filtering sys-
tem for fetal Heart Rate (fHR) monitoring is shown
in Fig. 3. The adaptive system consists of two mea-
surement sensors (FC/APC type) which were placed
on the chest and abdomen, optical interrogator and
DSP (Digital Signal Processing) unit for the recording,
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amplification, digitalization, demodulation and filter-
ing the measured signals. Optical interrogator con-
sists of DFB (Distributed Feedback Laser) laser with
wavelength 1549.5 nm and output power of 3 mW and
three InGaAs Amplified Photodetectors (Indium Gal-
lium Arsenide). Signal was digitalized by National In-
struments card NI-USB 6210 with the sampling fre-
quency of 250 kHz and analyzed by software applica-
tion written in the LabView (2015, National Instru-
ments, Austin, Texas, USA) [29] and [30].
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Fig. 3: Basic scheme of our sensor and its associated NLMS
adaptive system for fHR monitoring.

Measurements (Fig. 4) were performed in a suitable
research laboratory environment on 8 pregnant women
(GA = 36–42 weeks) after obtaining their written in-
formed consents. The test subjects were between the
age of 21 and 37, their weight was between 57 kg and
103 kg, and their height was between 156 cm and 196
cm. Based on the obtained results we can state that
no significant differences were found in the quality of
the collected data based on the subjects’ age, weight,
and height.

Fig. 4: An example of real data acquisition from a volunteer
subject.

Using real data, we created a simplified dynamic
model of sound distribution in the human body to
generate suitable synthetic signals such as: ST (sig-
nals from sensors placed on the chest) and SA signals
(from sensors placed on the abdomen). Our PCG sig-
nal model was inspired by contributions made by AL-
MASI et al. [31] and [32], who devoted considerable

efforts to generating synthetic PCG signals. In addi-
tion, we greatly benefited from our own research in
generating realistic synthetic physiological and patho-
logical fECG signals [33] and [34] in order to evaluate
the performance of our system.

Figure 5 shows an ideal mPCG signal after removing
the mother’s breathing artifacts (using a Butterworth
second-order band-pass filter with corner frequencies:
fL = 10 Hz, and fH = 400 Hz, respectively). This sig-
nal served as a reference input for our adaptive system
running the NLMS Algorithm. The filtered results en-
abled us to determine the mHR (by performing mPCG
signal peak detection). Maternal first and second heart
sounds are denoted as mS1 and mS2, respectively, in
Fig. 5.
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Fig. 5: The reference synthetic mPCG signal based on real mea-
surements made from thoracic (ST) sensors.

Figure 6 shows an ideal fPCG waveform after pre-
processing the maternal signal. We need to emphasize
here that the first fetal heart sounds (fS1) result from
the closing of the fetal tricuspid and mitral valves and
the second fetal heart sounds (fS2) are produced by the
closure of the fetal pulmonic and aortic valves.
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Fig. 6: The reference ideal synthetic fPCG signals based on real
measurements from abdominal (SA) sensors.

Figure 7 shows an example of the primary abdomi-
nal PCG (aPCG) synthetic input signal measured by
the abdominal sensor. The aPCG signal (made up of
the fPCG and mPCG components) is applied to the
adaptive NLMS Algorithm. For determination of the
fetal Heart Rate (fHR), it is necessary to detect fS1
components in the composite aPCG signals, which is a
difficult task without advanced signal processing.

Figure 8 shows an example of the output from our
adaptive system using the NLMS Algorithm. Based on
these results we can observe that: the mPCG compo-
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Fig. 7: The reference ideal synthetic fPCG signals based on real
measurements from abdominal (SA) sensors.
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Fig. 8: Output of the adaptive NLMS system.

nent has been significantly reduced. This figure clearly
shows that the elimination of the maternal component
is not ideal; nevertheless, this component is reduced
well under the level of fPCG signals. Using the fil-
tered signal, we can use conventional techniques [35],
[36] and [37] to determine the fHR information from
the fPCG signals.

Table 1 summarizes our experimental results. The
performance of our adaptive system using the NLMS
Algorithm was evaluated by finding the differences be-
tween input (SNRin) and output (SNRout) values as
well as the objective measure known as the Percentage
Root-mean-square Difference (PRD) [38].

Tab. 1: Statistical results of the tested NLMS Algorithm.

SNRin
(dB)

SNRout
(dB)

PRD
(%)

−7 0.98 14.61
−6 1.12 13.14
−5 1.33 10.74
−4 1.43 9.98
−3 1.48 9.35
−2 1.57 7.9
−1 1.65 6.74
0 1.71 5.69
1 1.70 5.74

The SNRin value can be calculated by using the fol-
lowing Eq. (4):

SNRin = 10log


N−1∑
n=1

[sigusef (n)]
2

N−1∑
n=1

[signoise(n)− sigusef (n)]2

 , (4)

where sigusef (n) is a desired signal (modelled reference
course of ST) and signoise(n) is a noise signal (mPCG
is measured up in the abdominal part - SA).

The SNROUT value can be calculated by using the
following equation Eq. (5):

SNRout = 10log


N−1∑
n=1

[sigdes(n)]
2

N−1∑
n=1

[sigpre(n)− sigusef (n)]2

 , (5)

where sigpre(n) represents a predicted (estimated) sig-
nal, or more precisely, the output from the proposed
NLMS adaptive system and sigdes(n) represents the
desired signal.

PRD (%) =


N∑

n=1

[sigusef (n)− sigpre(n)]2

N∑
n=1

sigusef (n)

 ·100. (6)

One way to quantify the difference between the ref-
erence and the output signal: sigpre(n) is by using the
PRD as given by equation Eq. (6) below:

4. Conclusion

In this article we focused on the validation of our novel
patent-pending interferometric PPG-based sensor and
its associated adaptive filtering system using the NLMS
Algorithm for effective processing of aPCG signals to
extract fPCG signals and fHR information. In the eval-
uations of the signal filtering quality of our system, we
used objective parameters such as SNR and PRD.

The main reason why we chose the fiber-optic tech-
nology to develop our system was that it enables fHR
monitoring without exposing the fetus to any radiation
(in contrast to the ultrasound-based CTG method).
Our innovative system offers a number of advantages
including applicability to continuous long-term fHR
monitoring without exposing the fetus to any radia-
tion as well as compatibility with Magnetic Resonance
Imaging (MRI) environments. The long-term monitor-
ing capacity of our system is highly desirable, espe-
cially in those cases when the pregnant woman faces a
dangerous situation (such as after an accident), and it
becomes absolutely necessary to perform a time con-
suming MRI examination to ensure that the unborn
fetus is intact and safe. The other specific advantage
of our technology is that it can be used in water deliv-
eries.

In our future research, we intend to use data from
clinical practice to investigate a variety of challenging
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research topics such as the influence of sensor place-
ment, fetal position and gestational age on aPCG sig-
nal filtering, fPCG signal extraction, and fHR moni-
toring.
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