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Abstract. Abdominal fetal ElectroCardioGrams
(fECGs) carry a wealth of information about the
fetus including fetal Heart Rate (fHR) and signal
morphology during different stages of pregnancy.
Here we report our results on the implementation
and evaluation of two non-adaptive signal processing
methods suitable for fECG signal extraction, namely:
the Independent Component Analysis (ICA) and the
Principal Component Analysis (PCA) Methods. We
used the fetal heart rate extracted from fECG signals
(in Beats Per Minute - BPM) and Signal-to-Noise Ra-
tio (SNR) as effective performance evaluation metrics
for our applied methods. Our findings demonstrated
that given adequate SNR, these methods produced
excellent results in accurate determination of fHR.
Furthermore, we found out that compared to the PCA
Method, the ICA Method produces a lower variance in
the detection of the fHR.
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1. Introduction

ElectroCardioGraphy (ECG) is a diagnostic method
which detects the electrical activity of the cardiac mus-
cle. In clinical practice, ECG is utilised to diagnose
heart arrhythmia, ischemia, and to assess the efficiency
of the treatment with drugs. For fetal monitoring, fe-
tal ElectroCardioGraphy (fECG) can be used. From
the fECG, it is possible to determine fetal Heart Rate
(fHR), which can provide information about fetal hy-
poxia [1]. Fetal ECG contains potentially valuable
information that could not be acquired by conven-
tional ultrasound-based methods [33], [34] and [35].
The methods for fECG measuring can be invasive or
non-invasive. Invasive method is the most accurate
method for measuring fHR and is performed by direct
transvaginal Fetal Scalp Electrode (FSE) attached di-
rectly to the fetus. Nevertheless, it is dangerous and in-
convenient for both mother and fetus due to its invasive
nature [2]. For these reasons, invasive method is being
replaced by non-invasive method, which is measured by
means of electrodes placed on maternal abdomen. This
signal (abdominal ECG, aECG) contains both mater-
nal and fetal component and also some noise caused
by maternal and fetal muscle activity, potentials gener-
ated by respiration and stomach, noise generated from
electrode-skin contact, etc. Equation (1) illustrated
the above mentioned relations, where xaECG is aECG,
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xmECG is materal ECG (mECG), xfECG is fECG, and
n is noise [9]:

xaECG(n) = xmECG(n) + xfECG(n) + n(n). (1)

The value of Signal to Noise Ratio (SNR) depends
on the abdominal electrodes placement [4] and [32] ges-
tational age, and fetal position [2]. The placement of
the electrodes is not standardized making it difficult
to automate the fHR measurement [4]. Normal fetal
Heart Rate (fHR) usually ranges from 120 to 160 Beats
Per Minute (BPM) compared to maternal heart rate,
which ranges from 70 to 80 BPM [3]. In addition, ma-
ternal signal amplitude significantly differs from the
fetal signal amplitude, which is 10 to 30 times weaker.
Although there is no direct neural connection between
mother and the fetus, hormones and placenta can af-
fect fHR and fetal blood pressure. Figure 1 shows that
the blood circulation in the fetus varies from the cir-
culation of a newborn and adult person.
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Fig. 1: Circulation of fetus, newborn and adult person.

Non-invasive measurement of fECG is performed by
means of a single-channel or multichannel source sig-
nals [2]. These signals are processed by using the
adaptive and non-adaptive methods. Although several
techniques and fECG extraction algorithms have been
tested, an optimal solution has not been found yet.

1.1. Adaptive Methods

Adaptive methods are characterized by an ability to
automatically set its coefficients according to varying
circumstances. Adaptive algorithms use aECG as the
primary output, whereas the signal recorded on the
maternal thorax (mECG) is used as the reference input
due to the fact that it is considered to contain only the
maternal component. Non-linear adaptive techniques
include Artificial Neural Networks (ANN), methods us-
ing a Hybrid Neural Network (HNN), and apply the
techniques of Adaptive Neuro-fuzzy Inference System
(ANFIS) [2] and [5]. Linear adaptive methods include
the methods based on the theory of Kalman filtering
(KF), Least Mean Squares algorithm (LMS) [6], Recur-
sive Least Squares algorithm (RLS) [7], and methods
based on Adaptive Linear Neuron (ADALINE) [2].

1.2. Non-Adaptive Methods

This paper is mainly focused on the non-adaptive
methods, which can be used for the elimination of the
unwanted signal and for fECG signal extraction with-
out any adaptation of the system. Figure 2 shows dif-
ferent non-adaptive methods using multichannel or sin-
gle channel signal sources.

1) Single Channel Signal Source

Many non-adaptive methods use the Single channel sig-
nal source, e.g. methods based on Wavelet Transform
(WT), Complex Wavelet Transform (CWT) [8], Pitch
Synchronous Wavelet Transform (PSWT) [11] or Dis-
crete Wavelet Transform (DWT) [9] and [10]. Hassan-
pour et al., 2006 [9] and Bhoker et al. 2013 [10], tested
the DWT for fECG extraction. The results showed
that this method is able to correctly detect R-R inter-
val.

Karvounis et al., 2004 [8], tested CWT, which is
used for automatic fECG extraction from aECG. They
found out that this algorithm is very fast and accurate
and could be used for simultaneous monitoring of fECG
and mECG in order to obtain mHR. Kumar et al., 2016
[11], evaluated PSWT and they reached better SNR
and correct estimation of fHR. Another non-adaptive
method, Correlation Technique (CT), was introduced
by Bemmel et al., 1968 [12]. However, this method is
not suitable for estimating fECG. Levkov et al., 2005
[9], introduced Subtraction Technique (ST) and sug-
gested that method does not defect spectrum of the
fECG during elimination of network disturbance when
compared to the other methods. Hon et al., 1964 [14],
improved SNR ranging from 10 to 20 dB during fECG
estimation by using Averaging Technique (AT).

Su et al., 2016 [15], dealed with nonlinear time-
frequency analysis called De-shape Short-time Fourier
Transform (STFT) and non-local median method and
concluded that these methods have better performance
than adaptive methods. These methods can estimate
fECG even if aECG contains more noise and provide
more information included in single aECG such as non-
linear relationships between consecutive cardiac activ-
ities.

Lee et al., 2016 [16], investigated the method of
Sequential Total Variation Denoising (STVD) and
demonstrated that fECG can be obtained with lower
errors and it is feasible for real time fHR monitoring
in the future. Tan et al., 2015 [17], introduced Fuzzy
C-means Clustering Method (FCM) and their results
showed that the method is extremely effective and safe
in the monitoring during the pregnancy and it is very
simple and suitable method for monitoring multiple fe-
tuses in the womb.
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Fig. 2: Non-adaptive methods.

Peng Ju He et al., 2016 [18], focused on a Single
Channel Blind Source Separation (SCBSS) and proved
that this method is able to detect fHR in case of mul-
tiple pregnancy. Additionally, this method is able to
extract fECG from aECG. Non-adaptive methods also
include regression techniques, frequency selective fil-
ters with Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR), methods based on Wiener fil-
tering theory and fix filtering, which includes Low-Pass
Filter (LPF) and High-Pass Filter (HPF) [2].

2) Multichannel Signal Sources

Multichannel signal sources are used mainly for the im-
plementation of the methods based on Blind Source
Separation (BSS). These methods include Indepen-
dent Component Analysis (ICA), Principal Component
Analysis (PCA), and Singular Value Decomposition
(SVD). Raj et al., 2015 [19], proposed Fast ICA al-
gorithm for fECG extraction and the results showed
that this method has very good performance. It is the
most commonly used method, for more information,
please see [20], [21] and [28]. Bacharakis et al. [22], fo-
cused on the use of PCA and proved that this method
has good results but ICA method shows better perfor-
mance. ICA and PCA, the main methods tested in this
paper, will be explained in more detail in Sec. 2. For
more information about PCA, see [29].

Leach et al. [23], discussed about SVD method and
concluded that this method is very effective for fECG
extraction and noise filtering. Unfortunately, the algo-
rithm is computationally demanding. Varanini et al.,
2016 [24], introduced the method of Quality Index Op-
timization (QIO) and concluded that this method can
be used even if the fECG has a low amplitude. Kumar
et al., 2016 [11], used the combination of SVD method
and polynomial classifiers. The results showed that
this combination improves SNR than when using SVD
method alone.

Gao et al., 2003 [21], tested the combination of SVD
and ICA methods and found out that this combination
can be used, when mECG and fECG are overlapped.
Liu et al., 2015 [25], proposed a novel integrated algo-
rithm based on ICA, Ensemble Empirical Mode De-
composition (EEMD) and Wavelet Shrinkage (WS).
They concluded that the tested combination improves
SNR, correlation coefficient (R), and Mean Squared Er-
ror (MSE).

Ayat et al., 2015 [26], introduced the combination
of polynomial networks and Savitzky-Golay smoothing
filters. The results proved that this combination pro-
vides better performance and can be use in real-time
fECG monitoring. Redif et al., 2016 [27], discussed the
method using Polynomial Matrix Eigenvalue Decompo-
sition (PEVD). According to the results, this method
is not accurate in detetecting P and T waves. On the
other hand, in the detection of the R waves the method
has proven itself.

3) Steps of This Work

Based on the extensive research of the literature dis-
cussed above, we chose ICA and PCA methods. More-
over, according to our initial testing, they provided the
best results. In this paper, Sec. 2. deals with the
algorithms of ICA and PCA methods, describes gen-
erator of synthetic data, and the parameters used to
evaluate the quality of the experiments. In Sec. 3.
we introduce the results which are then discussed in

Sec. 4.

2. Methods

2.1. ICA

Independent Component Analysis is the most per-
formed method of non-adaptive methods using mul-
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tichannel signal sources. It is a method for finding
hidden vectors in the data file [21]. ICA estimates
the fECG signal from the signal mixture. ICA intends
to find non-Gaussian data with independent compo-
nents, which are statistically independent, or at least
almost statistically independent. Statistical indepen-
dency means that information contained in one vari-
able does not provide information about another one.
One limitation of this method is that the signals in
abdominal mixture overlap. In addition, this method
requires at least two abdominal electrodes to record the
input signals.The Algorithm is very quick and effective
in extracting fECG.

The principle of ICA can be described simply as a
room with two persons that are communicating. In this
room, there are also two microphones located at differ-
ent places providing two signals x1(t) and x2(t), where
x1 and x2 are amplitudes and t denotes the time. Each
signal is a sum of speech signals and marked as s1(t)
and s2(t). This problem, when two or more people are
talking, is a so-called cocktail-party problem [28]. In
case of fetal monitoring, the maternal and fetal com-
ponents in the abdominal signals are considered as the
two voices in the previous example. Thus, ICA is an
ideal method for extracting fECG. The principle is de-
scribed by Eq. (2) and Eq. (3), where a11, a12, a21 and
a22 are parameters depending on distance of a speaker
from a microphone:

x1(t) = a11s1 + a12s2, (2)

x2(t) = a21s1 + a22s2. (3)

A problem is that the parameters aij are unknown.
The solution is to assume that s1(t) and s2(t) are sta-
tistically independent (it is true in many cases). That
allows to separate the original signals from the abdom-
inal mixture [28]. For ICA, linear signals x1 to xn from
n independent components are defined by Eq. (4):

xj = aj1s1 + aj2s2 + · · ·+ ajnsn. (4)

Time index t is obtained and then every mixture of
signals and every independent component sk are ran-
dom variables. In addition, it is assumed that mix-
ture of signals and independent components have a zero
mean value. If not, observed variables xi can be always
centered by subtracting mean of the samples, thus cre-
ating a zero mean model. It is very beneficial to use
vector-matrix notation instead of the sum. Then ma-
trix Amix is used with elements aij as it is shown in
Eq. (5), which has rows with transposed vectors ~xT

[28]:
~x = Amix · ~s. (5)

Sometimes, the columns of matrix Amix are needed
and for this reason, Eq. (5) is modified by model aj and

then we obtain Eq. (6). If we assume that components
are statistically independent and have non-Gaussian
distribution, it is possible to assume that mixture ma-
trix is square and can be calculated with its inverse
matrix W for estimation of matrix Amix, [28]. Then
independent components are obtained from this matrix
as in Eq. (7):

~x =

n∑
i=1

ai · si, (6)

~s = W · ~x. (7)

Fast ICA algorithm is divided into 6 steps [20]. First,
given mixed signals are converted into other signals
such that covariance matrix B computed using the con-
verted signals is the identity matrix. Then initialize
values for the matrix B to achieve BTB = 1. Third
step is updating elements of the matrix B using it-
eration formula (update all elements of this matrix).
In step four, columns of matrix B are orthonormal-
ized. Fifth step is repeating step three and four for
each iteration. Finally, the component is obtained by
multiplying BT.

It is necessary to do pre-processing of signal by cen-
tering and whitening before applying ICA algorithm.
Centering creates a vector with zero mean value and
then whitening creates a vector which is white, its
components are uncorrelated and their variances equal
unity. Figure 3 shows block diagram of ICA. For more
information about ICA and FastICA, please see [20],
[21] and [28].
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Fig. 3: Block scheme of independent component analysis.

2.2. PCA

Principal component analysis replaces original vari-
ables, which are correlated, with principal components
that are uncorrelated and in the most cases are linear
combination of original variables. Input of PCA is the
matrix X, which contains n samples for p original vari-
ables. Output of PCA is the matrix Z, which contains
n samples, but for p principal variables [29]. When as-
suming that matrix X is centered by columns, which
indicates that means of columns of matrix X equals
to zero, then matrix Z contains columns of principal
components created by linear combination of columns
of matrix X. This applies for Eq. (8), where A the or-
thogonal (uncorrelated) matrix and its inverse trans-
formation is defined by Eq. (9):

Z = X · A, (8)
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X = Z · AT. (9)

From Eq. (8) and Eq. (9) following equality X·XT =
Z·ZT can be defined. It indicates that both coordinate
systems have the same Euclidean distance between the
points and have the same angle between the vectors
connecting points and coordinate origin. Matrix G is
created because matrix A causes rotation around coor-
dinate origin [29]. This new matrix G causes rotation
around coordinate origin and for this matrix, principal
components are orthogonal as in Eq. (10):

Z = X · G. (10)

Statistically, PCA is identified as multivariate
method, which is based on the decomposition of the co-
variance matrix. For analysis, PCA ussually uses two
or three components. These components are graphi-
cally displayed in the space, which provides easy de-
tection of structures, such as a group of points. To es-
timate structures, different two or three principal com-
ponents can be used and take PCA as the projection of
2D or 3D data. Usually, chart of columns from columns
of matrix Z is created. It is influenced by the transfor-
mation of the data.

There are several limitations of PCA procedure.
Some components, the variablility of which is low, are
important for analysis of multivariate data. It is diffi-
cult to assess which part of variability of data is unim-
portant [29].

Four steps are given in PCA data analysis: transfor-
mation of the data, distribution of covariance or corre-
lation matrix, determination of the number of relevant
principal components, and graphical representation of
multivariate data [29].

Sometimes it is difficult to determine number of rel-
evant principal components. For purposes of ECG sig-
nal processing, we will use two components to sepa-
rate mECG and fECG. Graphical representation is per-
formed for the specific pairs of principal components.
It usually adds vectors of projections as rows of matrix
P = G · L that create combination chart.

fECG

mECG

s1(t)

sn(t)

Input

Sources
Output

Sources

Centring

+

Principal

Component

Analysis

Components

P1

P2

Fig. 4: Block scheme of principal component analysis.

Equation (11) shows that basis of PCA method is the
spectral decomposition of covariance matrix on eigen-
values and vectors. This method uses SVD method
directly as in Eq. (11) [29]. Mostly, shortened form of
the SVD method, which has variables U and S with
changed dimensions, is used and PCA method is cal-
culated by Eq. (12):

Y = U · S · VT, (11)
Z = U · S. (12)

It is necessary to do pre-processing of the signal only
by centering. Centering creates a vector with zero
mean value, similarly as in case of ICA algorithm, but
whitening is not usually necessary. In Fig. 4, we can see
block diagram of PCA. More information about PCA
can be found in [22] and [29].

2.3. Dataset

For the experiments, synthetic data were used. The
data were created by the signal generator introduced
by Martinek et al., 2016 [30]. It is a multi-channel gen-
erator which allows for the creation of synthetic signals
nearly identical to the real signals. The biggest advan-
tage of this generator is that it provides a reference
fECG and mECG for the selected electrodes (abdomi-
nal or thoracic). Reference fECG is used to check the
accuracy of proposed methods. This generator can de-
termine fHR, mHR, interference, gestational age, or
simulate the hypoxic conditions during 20th to 42nd
week of pregnancy. Another advantage of this genera-
tor is the possibility to generate the signal by setting
properties for six leads, four of them are abdominal
and two of them are thoracic.

Figure 5 shows 5 abdominal electrodes, which were
chosen for estimation in this work because they provide
ideal position for evaluation. Non-adaptive methods
require at least two abdominal electrodes and do not
use thoracic electrodes. Using the generator, we set
fHR on value 130, mHR on value 75, and recording
time of data on 30 seconds. Records of aECG data
from these 5 electrodes are generated for different levels
of input signals in range from −5 dB to −50 dB. From
these 5 abdominal electrodes, we get 10 combinations
by using two of them, 10 combinations by using three
of them, 5 combinations by using four of them and
1 combination by using all of them. That is in total
26 combinations for evaluation of proposed methods as
we can see in the first columns of all tables in Sec 3.

2.4. Evaluation Parameters

Evaluation of extracted fECG by proposed methods
can be performed subjectively or objectively. Subjec-
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Fig. 5: Chosen abdominal signals from generator.

tively, we can evaluate the graph of extracted fECG
and evaluate if this fECG is similar to ideal form fECG
visually. For this work, objective evaluation, using pa-
rameters such as BPM and SNR, is more relevant.

Evaluation by using SNR is used to define the re-
lationship between the useful signal and the noise.
The resulting SNR is calculated by subtracting input
SNR (SNRin) from output SNR (SNRout). If SNRin

and SNRout is known, we can calculate resulting SNR
and use it for the evaluation of the filtering by using
proposed non-adaptive method. In Eq. (13), we can
see calculation of SNRin and in Eq. (14) we can see
calculation of SNRout, where fECGideal is generated
fECG by generator, aECGinput is aECG which con-
tains maternal and fetal component, and fECGextract

is the extracted fECG by proposed non-adaptive meth-
ods. We need to note that aECGinput contains mECG
and fECG, so in Eq. (13) it is necessary to sub-
tract fECGideal from aECGinput in the denominator.
Similarly, it is necessary to subtract fECGideal from
fECGextract in Eq. (14):

SNRin = 10log10

N−1∑
n=1

(fECGideal)
2

N−1∑
n=1

(fECGinput−fECGideal)
2

, (13)

SNRout = 10log10

N−1∑
n=1

(fECGideal)
2

N−1∑
n=1

(fECGextract−fECGideal)
2

. (14)

Heart rate is a very important evaluation parame-
ter. To detect more accurate fHR, the algorithm does

not use fix amplitude level. In this work, the num-
ber of BPM in a recording is solved by using Detector
of R waves. We used full implementation of the Pan-
Tompkins filter [31].

3. Results

This section will be mainly focused on evaluation ICA
and PCA by BPM, fHR, and mHR, respectively. Next,
evaluation by using SNR is only implemented for PCA,
since ICA change the amplitude of obtained fECG as
we can see in Fig. 9 and Fig. 10. Therefore, it is im-
possible to calculate SNR.

3.1. Heart Rate (HR)

As it was mentioned before, this paper is mainly fo-
cused on fHR determination. In Tab. 2 and Tab. 3,
we can see results of fHR determination for ICA and
PCA. First columns of these tables show 26 combina-
tions of electrodes. All these combinations use signals
with different input quality levels. Input quality levels
of signals are marked by Roman numerals from I to X
and the values of these signals for each electrode on a
certain level are included in the Tab. 1.

1) Determination of fHR by Using ICA

The left part of Tab. 2 shows results of determination
of fHR by ICA from extracted fECG. In this part, we
can see that ICA is good in detection fHR for the most
cases in range of quality level of input signals from I to
VI. In quality level of input signals VII, this method is
not that effective. In last three quality levels, there is
the obtained HR of maternal component (mHR).

In the right part of Tab. 2, we can see that deter-
mination of mHR from extracted component mECG is
good for the most quality levels of input signals.

Results from Tab. 2 are also shown in Fig. 6. We
can see the most of combinations by using ICA have
approximately same value of fHR as ideal (reference)
fECG. Figure 6(a) shows detection of fHR in extracted
fECG. Blue, pink, and black circles represent quality
levels from VIII to X, have mainly different fHR than
ideal form of fECG. Figure 6(b) shows detection of
mHR in extracted mECG. Lines in both parts of Fig. 6
represent generated HR value which was 130 for fECG
and 75 for mECG.

2) Determination of BPM by Using PCA

Again, in left part of Tab. 3 we can see determination
of fHR from extracted fECG but by using PCA. In
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Fig. 6: Recorded detection accuracy of fHR and mHR by using ICA.

Tab. 1: Table of SNRin for different quality levels.

Electrode SNRin

I II III IV V VI VII VIII IX X
2 4.1 -3.1 -6.9 -13.2 -16.8 -21.4 -30.0 -32.6 -37.8 -41.5
22 6.8 -0.2 -4.0 -10.2 -14.0 -18.6 -26.2 -29.9 -35.0 -38.7
48 10.1 2.6 -1.1 -7.2 -10.7 -15.2 -22.9 -26.9 -31.4 -35.6
74 0.7 -6.7 -10.4 -16.7 -20.1 -24.6 -32.2 -36.0 -41.0 -44.9
94 -0.2 -7.0 -11.0 -17.1 -20.9 -25.7 -33.1 -36.7 -42.1 -45.6

this left part, a good detection of fHR also prevails.
So again, method of blind source separation proves to
be effective in fHR determination for the most quality
levels of input signals from I to VI. In quality level VII,
this method is not so effective and in last thee quality
levels, the value of obtained HR is equal to maternal
component (mHR) instead of fetal one (fHR).

In the right part of Tab. 3, same as in Tab. 2, there is
determination of mHR from second extracted maternal
component (mECG) by PCA. PCA is suitable for most
of the quality levels of the input signals. Determination
of mHR is not sufficient only in the first two quality
levels due to high SNRin at these levels.

Figure 8 illustrates the results from Tab. 3. We can
see that most of the combinations using PCA have fHR
approximately same as the ideal (reference) fECG. Fig-
ure 8 shows detection of fHR in extracted fECG. Blue,

pink, and black circles again represent quality levels
from VIII to X, have mainly different fHR than the
ideal fECG. Figure 7(b) shows detection of mHR in
extracted mECG. Lines in both parts of Fig. 7 repre-
sent the HR set in the generator, i.e. 130 for fECG and
75 for mECG.

3) Summary of fHR and mHR Detection

As we assumed, both of the proposed methods are very
accurate in detection of fHR from extracted fetal com-
ponent and mHR from extracted maternal component.
Both methods stop working in quality index of input
signals VIII, i.e. approximately for the values of SNRin

in the range from −30 to −35 dB. From upper figures
in Fig. 6 and Fig. 7, we can see that in case of determi-
nation of fHR, ICA shows slightly better results than
PCA.
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(b) Determination of BPM in extracted mECG.

Fig. 7: Recorded detection accuracy of fHR and mHR by using PCA.

Tab. 2: Table of BPM detected from the extracted components by using ICA.

Combination
of electrodes

Determinationof fHR by ICA
I II III IV V VI VII VIII IX X

2, 22 130 130 130 130 130 128 110 132 66 70
2, 48 130 130 130 130 128 126 126 74 70 68
2, 74 130 128 132 124 78 74 74 74 74 74
2, 94 130 128 126 114 132 126 76 62 68 72
22, 48 130 130 130 130 130 130 128 124 128 70
22, 74 130 130 130 128 128 130 128 74 74 74
22, 94 130 130 130 128 138 134 74 74 74 74
48, 74 130 130 130 128 128 118 74 74 74 72
48, 94 130 130 130 130 130 128 128 132 66 72
74, 94 130 130 128 124 134 132 64 74 64 74

2, 22, 48 130 130 130 130 130 128 128 126 128 70
2, 22, 74 130 130 132 124 134 134 128 74 74 74
2, 22, 94 130 130 128 124 126 128 72 64 74 72
2, 48, 74 130 130 130 132 130 72 134 74 74 72
2, 48, 94 130 130 130 130 130 128 124 62 122 72
2, 74, 94 130 130 126 124 130 114 72 74 64 72
22, 48, 74 130 130 130 130 122 126 134 74 72 70
22, 48, 94 130 130 130 130 130 128 130 124 74 74
22, 74, 94 130 130 130 128 130 136 128 74 66 74
48, 74, 94 130 130 124 130 128 128 122 118 68 68

2, 22, 48, 74 130 130 130 130 130 132 74 128 74 74
2, 22, 48, 94 130 130 130 130 128 130 124 132 72 74
2, 22, 74, 94 130 130 134 128 130 132 116 74 72 74
2, 48, 74, 94 130 130 130 130 130 134 74 74 74 70
22, 48, 74, 94 130 130 130 128 128 130 124 74 74 74

2, 22, 48, 74, 94 130 130 130 134 130 128 74 74 74 74
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Fig. 8: Comparison of results by PCA for different combinations of electrodes. Charts SNRout dependence on different quality
levels of input signals.

3.2. SNR

Second part of the evaluation is focused only on PCA
since ICA changes the amplitudes of both components
(see in Fig. 9 and Fig. 10) and changes order of the es-
timated components. Similarly, as in evaluation of HR,
input signals with different quality levels are used (see
Tab. 1). Table 4 shows averaged values of computed
SNRout. It shows if method on a certain quality level of
input signals still works or not. Table 4 shows average
values of SNRout and resulting SNR for all combina-
tions of different quality levels of corresponding input
signals after using PCA.

In this paper, only averaged values are used because
the ideal fECG signals, used in dominator in Eq. (14),
differ for a certain combination of electrodes. For ex-
ample in case of electrodes 2 and 22, we must com-
pute the ideal form of fECG to determine the final
SNRout. We get one table of SNRout values just for
one quality level of input signals. For these 10 quality
levels of input signal, we get 10 tables for SNRout and

10 tables for SNR. Then we average the values com-
puted for one combination in certain quality level. Fig-
ure 8 shows process of all 26 combinations for all qual-
ity levels of input signals. Figure 8(a) shows the com-
binations of two electrodes, Fig. 8(b) shows the com-
binations of three electrodes and Fig. 8(c) shows the
combinations of four and five electrodes. According to
Fig. 8, most of the electrodes combinations stop work-
ing in the quality level of input signals ranging from VI
to VII. So similarly as in previous evaluation of HR,
this evaluation shows that PCA stops working with in-
put signals in range from −30 to −35 dB and in this
range, PCA improves SNR approximately up to 25 dB.

3.3. Subjective Observations

Subjective evaluation is not suitable approach, some
observations are interesting, though. One of them was
already mentioned and concerns ICA. This method
changes amplitudes of the components as we can see

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 484



BIOMEDICAL ENGINEERING VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

Time (sec)A
m

p
lit

u
d

e 
(m

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1
0
1
2 Reference mECG

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

0
0.1
0.2
0.3 Ideal fECG

Time (sec)A
m

p
lit

u
d

e 
(m

V
)

(b)

Time (sec)A
m

p
lit

u
d

e 
(m

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2
0

0.2
0.4 aECG=mECG+fECG

(c)

Time (sec)A
m

p
lit

u
d

e 
(m

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2
0
2
4
6 Extracted fECG by ICA

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.02

0
0.02
0.04 Extracted fECG by PCA

Time (sec)A
m

p
lit

u
d

e 
(m

V
)

(e)

Fig. 9: ICA and PCA output for fECG estimation.

in Fig. 9 and Fig. 10, where fECG is extracted using
ICA and PCA, respectively. This method also changes
order of the estimated components. That is impor-
tant in case of creating a program to display the ex-
tracted components. Figure 9 shows an example of
fECG extraction by ICA and PCA. For the extraction,
input signals with quality level V were used, which en-
sures the ideal accuracy for extraction of fECG. The
signal in Fig. 9(a) is the generated mECG from elec-
trode number 2. Figure 9(b) is the generated fECG

from electrode number 2, Fig. 9(c) is aECG from elec-
trode number 2. Figure 9(d) is the extracted fECG
by using ICA for combination of electrodes 2 and 48.
Figure 9(e) is extracted fECG by using PCA for combi-
nation of electrodes 2 and 48. We can see that mECG
signal is suppressed and only a small random noise re-
mains. In Fig. 10 we can see the deformations caused
by maternal QRS complexes on both extracted fECGs
by ICA and PCA. These deformations are marked by
in Fig. 10.
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Fig. 10: Deformations of extraction fECG signal due to mHR.

Tab. 3: Table of BPM detected from the extracted components by using PCA.

Combination
of electrodes

Determinationof fHR by PCA
I II III IV V VI VII VIII IX X

2, 22 130 130 130 130 130 128 116 138 74 72
2, 48 128 152 130 126 130 132 136 122 74 74
2, 74 140 136 134 124 78 74 74 74 72 72
2, 94 128 118 118 122 132 130 90 68 70 72
22, 48 130 140 132 130 130 130 128 144 136 74
22, 74 130 130 130 128 128 130 126 74 74 72
22, 94 140 130 136 136 126 134 72 74 74 74
48, 74 128 116 120 128 124 118 72 74 72 72
48, 94 130 130 130 130 130 128 128 142 70 72
74, 94 126 128 128 128 138 140 124 74 72 72

2, 22, 48 130 122 130 130 130 128 128 130 120 74
2, 22, 74 128 126 130 130 126 124 74 74 74 72
2, 22, 94 130 128 130 128 128 128 112 114 68 74
2, 48, 74 134 124 126 130 128 70 74 74 72 72
2, 48, 94 128 132 130 130 130 140 142 70 68 74
2, 74, 94 144 128 122 122 128 114 74 74 72 72
22, 48, 74 130 124 132 130 130 132 74 74 72 72
22, 48, 94 130 120 130 130 130 130 130 124 74 74
22, 74, 94 130 130 130 128 130 132 130 74 72 72
48, 74, 94 128 122 130 130 130 130 74 74 72 72

2, 22, 48, 74 130 122 132 130 130 130 74 74 72 72
2, 22, 48, 94 130 120 130 130 130 128 130 146 70 74
2, 22, 74, 94 128 130 130 130 128 128 126 74 74 72
2, 48, 74, 94 134 126 130 130 130 144 74 74 72 72
22, 48, 74, 94 130 118 130 130 130 130 130 74 74 72

2, 22, 48, 74, 94 130 116 130 130 130 124 130 74 74 72

4. Conclusion

In this paper, we have tested ICA and PCA mainly for
fHR detection. Both methods showed good results, but
the fHR detection using ICA showed smaller variance
of values. Methods fail to work when input SNR ranges
from −30 to −35 dB. In another evaluation, we used

SNR as the main parameter. However, this evalua-
tion is possible only for PCA since ICA changes ampli-
tude of extracted components. This evaluation showed
similar results-PCA had high performance besides the
range from −30 to −35 dB. The extracted fECG signal
was deformed in case of using both algorithms by the
maternal residues. These algorithms show very high
performance, therefore it is possible to use them in the
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Tab. 4: Table of calculated values of SNRout for different input quality levels.

Combination
of electrodes

SNRout

I II III IV V VI VII VIII IX X
2, 22 -0.13 0.79 0.81 0.31 0.27 0.17 -0.07 -0.87 -2.63 -5.09
2, 48 -0.02 0.14 -0.53 -0.63 0.61 -0.73 -0.75 -0.88 0.10 -0.54
2, 74 0.21 -0.45 -0.55 0.53 -0.67 0.14 -0.50 -2.43 -6.12 -9.52
2, 94 -0.53 -0.29 -0.27 0.81 0.65 -0.58 -0.82 -2.74 -6.15 -9.27
22, 48 -0.29 -0.57 1.14 1.26 -0.54 1.24 -0.59 -0.74 -0.60 -2.39
22, 74 -0.27 0.14 0.88 0.78 0.54 -0.35 -1.31 -3.73 -7.13 -11.10
22, 94 0.01 0.46 0.71 0.85 -1.15 0.74 0.24 -2.50 -3.85 -7.37
48, 74 0.21 -0.75 -1.13 1.31 1.30 -1.37 -1.79 -0.72 -4.32 -7.00
48, 94 -0.85 -0.94 -0.98 0.46 -1.05 -1.12 -1.21 -1.68 -3.19 -5.29
74, 94 -0.48 -0.22 -0.25 -0.28 -0.41 -0.18 -1.65 -3.80 -7.34 -11.07

2, 22, 48 -0.06 0.32 -0.33 -0.25 -0.23 1.24 -0.46 0.08 -1.73 -3.99
2, 22, 74 0.03 1.62 -0.81 2.05 1.84 1.02 -0.92 -3.96 -7.84 -11.74
2, 22, 94 -0.29 1.18 1.46 -0.78 1.35 1.14 -1.40 -2.71 -5.33 -8.08
2, 48, 74 0.13 0.64 -1.17 1.33 1.31 -1.37 -1.92 -3.43 -5.07 -9.04
2, 48, 94 -0.32 0.03 -0.39 -0.44 0.38 0.23 -0.22 -1.66 -4.18 -7.05
2, 74, 94 -0.11 0.43 0.56 0.58 0.50 0.24 -1.74 -3.93 -7.49 -11.22
22, 48, 74 -0.08 0.65 1.51 1.61 -0.37 -0.54 -1.46 -3.40 -6.22 -9.95
22, 48, 94 -1.00 -1.84 -1.84 -1.86 1.28 1.24 1.00 0.08 -3.18 -5.55
22, 74, 94 -0.60 0.95 -0.64 -0.73 -0.98 -1.57 -1.88 -5.07 -9.32 -13.16
48, 74, 94 -0.30 0.18 -0.60 -0.67 -0.75 0.40 -1.11 -3.62 -6.26 -9.82

2, 22, 48, 74 0.13 1.17 2.21 2.45 2.39 1.84 -0.77 -3.86 -6.86 -10.69
2, 22, 48, 94 -0.65 -0.54 0.30 -0.04 0.23 -0.24 -0.56 -1.83 -4.33 -7.10
2, 22, 74, 94 -0.65 0.19 0.66 0.20 0.37 -0.33 -2.07 -5.11 -9.06 -13.01
2, 48, 74, 94 -0.02 0.64 1.12 -1.07 -1.15 0.86 -0.94 -4.06 -6.73 -10.47
22, 48, 74, 94 -0.78 -0.28 0.13 0.16 -0.03 -0.26 -2.02 -4.53 -7.98 -11.80

2, 22, 48, 74, 94 -0.45 0.44 1.21 1.28 -0.63 -0.86 -1.52 -4.71 -8.11 -11.96

clinical practice for determining fHR for diagnosing fe-
tal hypoxia. This research may be improved by testing
obtained fECG by determining so-called T/QRS ratio.
However, the deformation of T wave in extracted fECG
must be minimal.
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