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Abstract. In this paper, a two-level sensorless Maxi-
mum Power Point Tracking (MPPT) strategy is pre-
sented for a variable speed Wind Energy Conversion
System (WECS). The proposed system is composed of
a wind turbine, a direct-drive Permanent Magnet Syn-
chronous Generator (PMSG) and a three phase con-
trolled rectifier connected to a DC load. The realised
generator output power maximization analysis justifies
the use of the Field Oriented Control (FOC) giving
the six Pulse Width Modulation (PWM) signals to the
active rectifier. The generator rotor speed and posi-
tion required by the FOC and the sensorless MPPT
are estimated using a Synchronous Reference Frame
Phase Locked Loop (SRF-PLL). The MPPT strategy
used consists of two levels, the first level is a power reg-
ulation loop and the second level is an extremum seek-
ing bloc generating the coefficient gathering the turbine
characteristics. Experimental results validated on a
hardware test setup using a DSP digital board (dSPACE
1104) are presented. Figures illustrating the estimated
speed and angle confirm that the SRF-PLL is able to
give an estimated speed and angle which closely follow
the real ones. Also, the power at the DC load and the
power at the generator output indicate that the MPPT
gives optimum extracted power. Finally, other results
show the effectiveness of the adopted approach in real
time applications.
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1. Introduction

The Earth receives every day an infinite renewable en-
ergy that we can exploit to increase sustainable de-
velopment. The extracted energy is integrated in the
ecosystem that stimulates the growth of new expertise,
creates jobs and ensures the energy future. Among all
known forms of renewable energy, wind energy conver-
sion has become a major producer of electric power
[1].

Recent research in this field is focused on minimizing
the overall cost of the Wind Energy Conversion System
(WECS) while improving the quality of the produced
power. In order to achieve this objective, several works
have been carried out to avoid the use of the mechan-
ical sensors which are expensive to buy and maintain.
These sensors are usually implemented to measure the
generator rotation speed as well as the angle of the
rotor that are necessary for the general control of the
system and the search for the maximum points of the
extractable power.

With the same principle, we consider for investiga-
tion in this work a WECS consisting of a wind turbine,
a direct-drive Permanent Magnet Synchronous Gener-
ator (PMSG), a three phase active rectifier connected
to a DC load. The PMSG choice is very advantageous
[2], it allows direct-drive systems that avoid gearbox
[3] use and this leads to low maintenance constraints.
This type of machines is characterized by a high-power
density and high efficiency (as there are no copper
losses). The use of permanent magnets for the excita-
tion consumes no extra electrical power. The absence
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of mechanical commutator and brushes or slip rings im-
plies low mechanical friction losses. Finally, the PMSG
drives achieve very high torque at low speeds with less
noise.

Based on a generator output power maximization
analysis, the Field Oriented Control (FOC) is imple-
mented [4] to control the active rectifier whose perfor-
mance compared to a diode rectifier has been confirmed
in a previous work [6].

Betz limit [5] indicates that the maximum power that
can be extracted from the wind is limited to approx-
imately 0.59 of the kinetic energy. The power coeffi-
cient Cp, included in the expression of the generated
power, takes into consideration this limit and varies
with the rotational speed of the turbine. In a different
way, the maximum points of the power vary with the
wind speed and this justifies the implementation of a
Maximum Power Point Tracking (MPPT) strategy to
keep our system available to generate optimal power
and improve its performance.

To reduce the cost of a WECS, a profitable solution
is the sensorless MPPT that allows avoiding the use
of mechanical sensors and then improving the relative
cost/quality of the complete system. For this reason,
there are many estimators used to estimate the gener-
ator rotor speed and position required by the FOC and
the MPPT. In our previous works, two types of estima-
tors were implemented; The fisrt is the Angle Tracking
Observer (ATO) [6] and the second is the Extended
Kalman Filter (EKF) [7]. In this work, we adopt a
mechanical sensorless MPPT strategy that uses a Syn-
chronous Reference Frame Phase Locked Loop (SRF-
PLL) as estimator. It should be noted that the ad-
vantage of the SFR-PLL is that it avoids the double-
frequency error problem of single-phase standard PLL.
It has a simple structure that offers ease of parameter
tuning and robust features.

The MPPT strategy adopted is a two-level strat-
egy. The first level is the power regulation loop that
gives the reference value of current iqref to the FOC. A
method of extremum seeking [8] is involved as a second
level of the MPPT algorithm to generate the optimum
value of the coefficient including turbine parameters in
the expression of the output power. This coefficient
is needed in the first level. Estimating this coefficient
allows realizing this approach even when the turbine
parameters are not determined.

This work is organized as follows: The first part
presents the system modeling by detailing the equa-
tion models of both the different components of the
wind conversion system considered and the control ap-
plied to the active rectifier and by giving their detailed
structure illustrated in Fig. 1. The second part con-
cerns the sensorless two-level MPPT strategy adopted
and explains the estimators used. The third part gives

the results obtained on the experimental test bed setup
that enables the evaluation of the approach discussed
in this paper.

2. System Modeling

Figure 1 presents the system considered in this work
for investigation. It consists of two main parts; the
hardware setup gathering elements of the wind en-
ergy conversion system which are: a wind turbine, a
direct-drive PMSG connected to a three phase rectifier
supplying a DC load, and the analog board dSPACE
1104 containing analog to digital and digital to analog
converters making connection between the Real-Time
Interface (RTI) in the monitoring PC and the hard-
ware possible. In the interface, the Simulink model of
the global control is implemented giving-out six Pulse
Width Modulation (PWM) signals to the active recti-
fier.

2.1. Wind Turbine

The turbine considered in this paper is a Horizon-
tal Axis Wind Turbine (HAWT) with 3 blades whose
length is R in (m) and which are fixed on a drive shaft
rotating at the speed Ωturbine in (rad·s−1). Consider-
ing Vw the wind speed in (m·s−1), ρ the air density
in (kg·m−3) (approximately 1.22 at atmospheric pres-
sure), and the area opposed to the wind A in (m2), the
kinetic power of wind is expressed as follows:

Pw =
ρAV 3

w

2
. (1)

Then the power at the output of the turbine has this
expression:

Pt = Cp(λ)Pw. (2)

The power coefficient Cp is a function of the relative

speed λ =
RΩturbine

Vw
. This coefficient depends on the

type of the turbine since it depends on the surface
swept by the rotor whose size is different for different
types of turbine.

2.2. Permanent Magnet
Synchronous Generator

The PMSG model [9] is represented in the Park refer-
ential related to the rotating field, voltages expressions
are:

vd = −Rsid + Lqωeiq − Ld
did
dt
, (3)

vq = −Rsiq − Ldωeid − Lq
diq
dt

+

√
3

2
Φsfωe, (4)
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Fig. 1: Global structure.

where Rs is the stator resistance, Ld and Lq are
the dq inductances, Φsf is the magnetic flux density,
ωe = pΩturbine is the angular frequency and p is the
number of pole pairs. Production of the electrical en-
ergy at the output of the generator causes a braking
torque which has this expression:

Te = −p

(√
3

2
Φsf iq + (Lq − Ld)idiq

)
. (5)

The mechanical equation is:

J
dΩturbine

dt
= Tt + Te − fΩturbine, (6)

where J is the total inertia, f is the viscous friction
coefficient and Tt = Pt/Ωturbine is the turbine torque.

2.3. FOC for the Active Rectifier

1) Study of Power Maximization

This study is realised to explain the motivation to use
the FOC for the rectifier. The aim is to maximize the
generator output power whose expression is:

Pg = vaia + vbib + vcic = vdid + vqiq. (7)

Replacing elements of this equation by their expres-
sions in Eq. (3) and Eq. (4) and considering the steady
state characterized by no variations of currents and

speed
(
did
dt

=
diq
dt

=
dΩm
dt

= 0

)
we deduce the follow-

ing equations of Pg and the constraint of its maximiza-
tion:

Pg = Cp

(
RΩm
Vw

)
Pw −Rs

(
i2d + i2q

)
− fΩ2

m, (8)

Cp

(
RΩm
Vw

)
Pw − fΩ2

m = −TeΩm =

=

√
3

2
pΦsfΩmiq.

(9)

A popular method allowing to realise this is the La-
grange multipliers whose first step is to define the La-
grange function as:

ζ = Pg + λζ · . . . ·

·

(
Cp

(
RΩm
Vw

)
Pw − fΩ2

m −
√

3

2
pΦsfΩmiq

)
.

(10)

The second step is to find a stationary point of this
function by finding solution of the partial derivatives of
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this function with respect to its four variables, results
of this are given as follows:

∂ζ

∂id
= 0⇒ id = 0. (11)

∂ζ

∂λζ
= 0⇒ iq =

Cp

(
RΩm
Vw

)
Pw − fΩ2

m√
3

2
pΦsfΩm

. (12)

∂ζ

∂iq
= 0⇒ λζ =

4Rs
3p2Φ2

sf

(
f − Pw

Ω2
m

Cp

(
RΩm
Vw

))
. (13)

∂ζ

∂Ωm
= 0⇒ RΩm

Vw

dCp
(
RΩm
Vw

)
dλ

=

=

λζCp

(
RΩm
Vw

)
+ (λζ + 2)fΩ2

m/Pw

λζ + 1
.

(14)

From the first derivative Eq. (11) we deduce that Pg
is maximised when id = 0, for that reason the FOC is
selected as control of the implemented rectifier.

2) FOC Structure

The structure of the FOC [10] can be found in the
Fig. 1 consisting of two current regulation loops based
on the two similar transfer functions whose form is:

G(s) =
i

v
=

−1

R+ Ls
. (15)

Then

i =
−1

R+ Ls

(
Kpci−

Kic

s
(iref − i)

)
, (16)

i

iref
=

Kic

L

s2 +
R+ kpc

L
s+

Kic

L

. (17)

Finally, we extract a second order equation with the
following form:

i

iref
=

ω2
n

s2 + 2ξωns+ ω2
n

. (18)

We consider the same parameters for both currents id
and iq, then coefficientsKic = Lω2

n andKpc = 2ξωnL−
R are the same for the two control loops. As illustrated,
Park and inverse Park transformations in this control
require the angle θ estimated by the SRF-PLL. From
vd and vq expressions, we deduce that a decoupling of
the two currents control loops is necessary. Then the
decoupling terms are:

DTd = ωeLqiq, (19)

DTq = −ωeLdid + ωe

√
3

2
Φsf . (20)

3. Sensorless MPPT

As outlined in the introduction, the aim of this work is
to build a complete MPPT strategy for the proposed
WECS detailed in Fig. 1 from which we can observe
that the MPPT algorithm has two levels the first is
a power regulation loop generating at its output the
iqref for the FOC and the second is an extremum seek-
ing system giving the value of the Kopt. Generator
rotor speed needed is estimated using the SRF-PLL.

3.1. SRF-PLL as Angle and Speed
Estimator

The SRF-PLL [11] is based on aligning the output fre-
quency with the d axis in the dq frame by using a PI
controller to force the q component voltage to zero.
Referring to Fig. 1 which shows the basic structure of
the SRF-PLL, the voltages in dq frame Vd and Vq are
deduced from the three phase voltages Va, Vb and Vc
using Park’s transform including the estimated phase
angle θ:VdVq
V0

=
2

3

sin(θ) sin(θ − 2π
3 ) sin(θ − 4π

3 )

cos(θ) cos(θ − 2π
3 ) cos(θ − 4π

3 )
1
2

1
2

1
2


VaVb
Vc

. (21)
To align the SRF-PLL output with d axis, the PI con-
troller forces the component to zero. When this out-
put becomes in-phase with the supply voltage, the PI
output will be equal to ω. Then the angle θ can be
obtained by integrating the PI output as shown.

3.2. MPPT Level 1: Power
Regulation Loop

We consider the expression of the turbine generated
power to extract the area where the points of maximum
power are located. That is the curve described using
the following expression:

Popt =
1

2
ρA

(
RΩm
λopt

)3

Cpopt = KoptΩ
3
m,

with Kopt =
ρAR3Cpopt

2λ3opt
.

(22)

As we have shown, the MPPT principle must be ap-
plied to the entire conversion chain. Then we con-
structed a power control loop based on the knowledge
of the optimum power value, the reference power is
obtained from the estimated rotational speed and the
value of the Kopt parameter. The structure of this loop
is illustrated in Fig. 1.

© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 386



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

3.3. MPPT Level 2: Seeking Kopt

For our case, we suppose that characteristics of the
wind turbine are undefined, so the value of Kopt is
undetermined. To determine this value continuously
an automatic system is implemented, this system is a
method of extremum seeking [12] presenting a second
level of the MPPT. This block, as Fig. 1 describes, de-
termines an average value Kmean and adds a very slow
sinusoidal perturbation to this value to generate the
value of Kopt used as an input for the power control
loop. Finally, we obtain variations in the average value
of instantaneous power Pinst according to variations of
the Kopt value at the output of a high pass filter. The
low pass filter rejects the frequency of the disturbance
signal at the output of the multiplier. Gain a is the dis-
turbance signal amplitude and ε adjusts the integrator
gain which defines Kmean value.

4. Experimental Results

The proposed control system was implemented using
real time digital controller dSPACE 1104. This con-
troller and the hardware test setup consisting of a 5 kW
PMSG, wind turbine emulator, three phase rectifier
and a DC load R = 115.1 Ω are presented in Fig. 2.

Fig. 2: Experimental test bed setup.

This paper considers a variable speed wind conver-
sion system for investigation. To evaluate its perfor-
mance and as illustrated in Fig. 3, a variable wind
speed profile in the form of a repeating sequence of
different values of the wind speed is considered.

According to Fig. 4, where the estimated position
by the SRF-PLL and one of the three phase voltages
precisely Va are presented, the SRF-PLL is operating
accurately, and this is clearer in the zoom.

The second estimated parameter by the SRF-PLL
needed in the system control of our sensorless MPPT
structure is the generator speed which is presented with
the real generator speed in Fig. 5. It appears that val-
ues of the two speeds are close and also vary simulta-
neously.
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Figure 6 shows the generator output three phase
voltages. To better visualise variations of this three
phase voltages, a zoom in on a smaller section of the
time line was applied.
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The DC voltage and current are presented in Fig. 7
varying with the variable wind speed profile. Values of
this two outputs are in accordance with the measure-
ments carried out in real time during the experiments.
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Finally, Fig. 8 presents variations of both the DC
power at the resistive load and the active generator
output power.

5. Conclusion

In this paper, a sensorless two-level MPPT strategy
was applied to a variable speed wind energy conversion
system composed of a wind turbine, a PMSG and an
active rectifier connected to a DC load. The complete
structure is presented in Fig. 1.
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An analysis of the generator power maximization
was discussed previously justifying the use of the FOC
generating the PWM signals to the active rectifier.

The approach that has been used in this work aims to
avoid the mechanical sensors for their aforementioned
disadvantages, for this reason, an SRF-PLL was em-
ployed as a speed and angle estimator which are inputs
of the FOC and the MPPT blocks.

The MPPT strategy adopted has two levels; the first
level is a power regulation loop generating the value
of iqref needed in the FOC and taking as input the
value of Kopt the coefficient that includes the turbine
parameters and estimated by the second level which is
a method of the extremum seeking.

An experimental setup with a 5 kW PMSG includ-
ing a real time digital controller dSPACE 1104 was
designed in order to validate the described approach.

From the last section where the experimental results
are analysed and shown, it is apparent that the esti-
mated speed by the SRF-PLL follows the real gener-
ator speed and then the main aim of employing the
SRF-PLL is reached. Also from figures illustrating the
power at the DC load and power at the generator out-
put, we can deduce that the MPPT strategy adopted
gives optimal extracted power from the studied WECS.
As can be seen from the other obtained results, the
whole introduced strategy is achievable in real time
applications and can be replaced by other MPPT al-
gorithms according to the needs and objectives of the
system control.

Future work will investigate the comparison between
the different estimators used in our previous works as
outlined in the introduction, and the estimator em-
ployed in this work.
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Appendix A
Experimentation PMSG
Parameters

• Output power = 0–5 kW,

• Rated voltage = 208 Vrms,

• Rated speed = 1200 rpm,

• Resistance = 0.46 Ω,

• Inductance = 4.86 mH.
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