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Abstract. The wings scales of the butterflies were stud-
ied by Atomic Force Microscopy (AFM) in the air.
Measurements were done without special preparation
of species in order to observe the surface in real con-
ditions. The data of probe microscopy (figures) con-
firm AFM to be a powerful technique for determining
features of the insects’ wings. These features play a
key role in optical phenomena which makes fascinat-
ing wings coloration. The structure determines light
reflection, propagation, and diffraction. AFM imaging
was done at the areas of specific colors without scale
separation.
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1. Introduction

The natural structures are sources of inspiration
for design of artificial devices for many years. One
of such structures could be found at the wings
of the butterflies and moths [1]. The exceptional
optical and mechanical properties make them im-
portant for a number of applications [2], [3] and [4].

The fractal concept is widely used in biological sciences
to characterize the irregular complex structures [5], [6]
and [7]. On the other hand, fractal geometry offers
new and valuable opportunities to describe and com-
pare complex individual or species-specific patterns. It
provides an integrative measure that captures the com-
plexity of a whole pattern when explored at different
scales, which would be a great help to study their vari-
ability and functionality [8] and [9]. Fractal analysis
describes the geometrical complexity in the wings of
several, taxonomically different butterflies, in terms of
their fractal dimension. It was used in several studies
from biological literature [10]. Two groups of butter-
flies were chosen for this study. Morphology and sur-
face structure of the wings scales were investigated.
First is Euploea mulciber, known as "Striped Blue
Crow", and the second is Morpho didius, also named
as "Giant Blue Morpho". Both species exhibit strongly
angle dependent coloration of wings. Our analysis was
carried out using 10 specimens for each species. The
darkest and the brightest areas of wings were stud-
ied. Even ordinary optical microscopy can show that
the scales are different along the wing surface; it de-
pends on the distance from the body. Some of them
are even modified into the tiny tubes. Forewings of the
butterflies were studied at discal and postdicsal areas.
The choice of areas could be explained by differences in
color and consequently the surface structure (Fig. 1):
the one that reflects light and looks shiny, and the other
looking dark and lusterless.
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Fig. 1: Rows of scales, the iridescence is created by physical
phenomena.

2. Experimental

2.1. Atomic Force Microscopy

AFM (Atomic Force Microscope) NTEGRA (NT-MDT
production) was used to study the surface topography
in semi-contact mode. No special preparation of the
sample was done: just cutting of a piece of wing by
scissors and fixing it by a tape on the substrate from
the bottom side of the wing. All measurements were
performed in the same laboratory, at room temperature
(296 ± 1 K) and 50 ± 1 % relative humidity. The mea-
surements were repeated three times for each sample on
different reference areas, to validate the reproducibility
of the data. Statistical analyses were performed using
the GraphPad InStat version 3.20 computer software
package (GraphPad, San Diego, CA, USA) [11]. The
data of AFM represent only the surface appearance,
without explanation of inner structure of the wings.
The scale surface ridges are responsible for direction of
light wave’s propagation. These structures define the
part of spectrum which is absorbed or penetrates to the
next bottom layers. The upper topography texture of
the wings represents diffraction grating (Fig. 2).

Smaller scanning area allows detailed observation of
the surface topography (Fig. 3).

The native software of the microscope provides pro-
cessing of the results. Figure 4 demonstrates High-High
correlation graphs of both species. It characterizes lat-
eral distribution of surface features - the distance of
features’ high correlation. The distance between sur-
face features as well as their shape forms the diffraction
grating on the surface and contributes the scale color.

The characteristic wavelengths of the spatial peri-
odicity are measured using a spatial power spectrum
(Tab. 1). The wavelength periodicity also shows the
difference between species and different colors on the
same wing. There is one large peak (sharp at a par-
ticular wavelength) on each graph and smaller peaks
surrounding (Fig. 5).

2.2. Fractal Analysis

Cube counting method, based on the linear interpola-
tion, applied for AFM data, was used for fractal anal-
ysis of the butterflies’ wings, which is described in de-
tail in [12]. Cube counting method [12] is derived di-
rectly from a definition of box-counting fractal dimen-
sion. The algorithm is based on the following steps:
a cubic lattice with lattice constant l is superimposed
on the z-expanded surface. Initially l is set at X = 2
(where X is length of edge of the surface), resulting in
a lattice of 2 × 2 × 2 = 8 cubes. Then N(l) is the
number of all cubes that contain at least one pixel of
the image. The lattice constant l is then reduced step-
wise by factor of 2 and the process is repeated until
l equals to the distance between two adjacent pixels.
The slope of a plot of log N(l) versus log1 = l gives
the fractal dimension D directly. The results of the
fractal dimensions (D) for AFM images of wings areas
of all samples are shown in Fig. 6.

The results of the fractal dimensions (D) with co-
efficients of correlation (R2) are given in Tab. 2. For
all analyzed cases (Tab. 2), the coefficients of correla-
tion (R2) associated with fractal dimensions D were
greater than 0.99 representing a good linear correla-
tion. An (R2) of 1.0 indicates that the regression line
perfectly fits the data.

The texture of wings scales is semiregular. It is also
found that the geometrical complexity of the butter-
flies’ wings shows clear distinctions for the two groups
of species in terms of their fractal dimension. These
results provide us additional methods for distinguish-
ing species and their distinctive colors (differences in
intensity and tonality).

2.3. Thermocamera Imaging

Since AFM is limited by height of the sample, the imag-
ing was carried out on flat scales of the wings (not
on veins of wing construction). But these construc-
tion elements are well seen on thermocamera images.
Thermocamera imaging mostly depends on the mate-
rial nature and its inner structure. It partly represents
macrostructure of the wing.

The thermocamera was used to follow the behavior
of wings in relation to heated objects: the butterfly
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(a) Giant blue morpho samples (black color). (b) Striped blue crow samples (brown color).

(c) Giant blue morpho samples (blue color). (d) Striped blue crow samples (blue color).

Fig. 2: AFM images of wing area (area scan 20×20 µm).

(a) Brown color. (b) Blue color.

Fig. 3: AFM images of wings area of striped blue crow samples (area scan 10×10 µm).

wings seem to be transparent. The heated pattern
is well observed through the wing in the image from
camera (Fig. 7). The transparence helps butterflies

to be invisible for most of predators. It is well
known that a number of predators have very good
vision in IR spectrum. Only the veins show the
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Fig. 4: High-High correlation graphs that correspond to Striped Blue Crow samples.

Tab. 1: Radial wavelength and radial wavelength index for the two groups of butterflies.

Parameters
Striped Blue
Crow samples
(brown color)

Striped Blue
Crow samples
(blue color)

Giant Blue
Morpho samples

(black color)

Giant Blue
Morpho samples

(blue color)
Radial

Wavelength
(µm)

10.0060 9.9990 1.6660 19.9990

Radial
Wavelength

Index
0.0616 0.0995 0.0794 0.0686
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(b) Blue color.

Fig. 5: Radial power spectrum density graphs that correspond to Striped Blue Crow samples.

presence of the wings between thermocamera and
heated object. This could be considered as one more
protected mechanism for surviving (besides imitation
of tree and grass leaves or eye spots on the wings).

The basic properties of the height values distribution
of the surface samples (including its variance, skewness,
and kurtosis), computed according to [12] are shown in
Tab. 3.
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(a) Striped Blue Crow samples (blue color).
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(b) Striped Blue Crow samples (brown color).
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(c) Giant Blue Morpho samples (black color).
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(d) Giant Blue Morpho samples (blue color).

Fig. 6: Fractal dimension for AFM images of wings areas (area scan 20×20 µm).

Tab. 2: The fractal dimensions (D) with coefficients of correlation (R2) determined by the cube counting method, based on the
linear interpolation type, of the two groups of butterflies: a) Striped Blue Crow sample; b) Giant Blue Morpho sample.
Scanning square areas of 20×20 µm.

Parameters
Striped blue
crow samples
(brown color)

Striped blue
crow samples
(blue color)

Giant blue
morpho samples

(black color)

Giant blue
morpho samples

(blue color)
D 2.27 ± 0.02 2.36 ± 0.02 2.21 ± 0.018 2.44 ± 0.018
R2 0.995 0.995 0.996 0.996

3. Discussion

A lot of natural objects have a fractal structure. The
structure is repeated at the lower metric range. The
wing scales are fractal photonic structures which are
developed by nature. It is one of the ways to ma-
nipulate the energy of sun. In order to analyze the
influence of a structure on coloration, we scanned dif-
ferent colors area of two species. Branches of micro
and nano-sized features form the wing scale [13]. Al-
though the diffraction grating is observed at all cases,

there are differences in correlation lengths and fractal
data of the surfaces. Diffraction grating of E. mulciber
specie was studied by F. Mika in [14] by SEM. The
advantages of AFM in this case before SEM are mea-
surements in real conditions (air, humidity) and obtain
real 3D data about surfaces topography. Correlation
lengths (Lx = 0.882 µm and Ly = 0.352 µm for blue
color, and Lx = 0.800 µm Ly = 299 µm for brown
color of Striped Blue Crow wing sample) are the char-
acteristic lengths over the scanned surface. Correlation
length depends of roughness of the surface: the higher
roughness, the smaller correlation length [15]. Consid-
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Tab. 3: The basic properties of the height values distribution (including its variance, skewness and kurtosis) of the two groups of
butterflies: a) Striped Blue Crow sample; b) Giant Blue Morpho sample. Scanning square areas of 20×20 µm.

The basic properties Striped blue Striped blue Giant blue Giant blue
of the height values crow samples crow samples morpho samples morpho samples
distribution of the (brown color) (blue color) (black color) (blue color)
surface samples Values Values Values Values
Ra (Sa) (µm) 0.439 0.66 0.816 0.351
Rms (Sq) (µm) 0.543 0.828 0.933 0.456
Skew (Ssk) (-) -0.279 0.755 -0.106 -1.35

Kurtosis (Sku) (-) -0.07 0.248 -1.14 0.981
Inclination θ (◦) 3.2 5.7 4.7 5.2
Inclination ϕ (◦) -0.2 7.4 32.7 -173.6

Fig. 7: Thermocamera image of fingers behind the wings.

ering this, the attention is paid to the quality of the
AFM measurements, since the noise is close to zero
correlation length [15]. The data for fractal analysis
were measured with the same magnification. Fractal
dimensions correlate with the scales morphology. So,
black and brown color surfaces have lower fractal di-
mension than the blue areas. And consequently, these
values relate to reflectance of the surface [16], [17], [18],
[19] and [20]. Multilayered structure of the scales and
their arrangement contribute the colors of wings. How-
ever, surface features also play important role (which
are diffraction gratings for visible light). They are well
seen in AFM images [21], [22] and [23]. The chitin ele-
ments have different shapes: the oriented layers on the
ridges and well visible notches constriction. The cross-
ribes between ridges form a complex three-dimensional
structure. The variation of surface structure provides
obtaining the colors from iridescent to antiglare.

4. Conclusion

There are many optical systems created by nature. One
of them is the wing scale which has superior optical and
hydrophobic surface properties. It was found that dif-
ferent color areas have different three-dimensional (3D)
structure of the surface. The 3D structure represents

complicated semi-ordered combination of surface fea-
tures. The sizes of these features are comparable to
visible light wavelengths. The studied 3D topography
is a first step in color producing: the diffraction grating
of the scale surface defines further propagation, trans-
mission and reflection of light. The wings seem to be
transparent at IR radiation since it is possible to see
heated objects through the wings by thermo-camera.
Here, by combining correlational and experimental ev-
idence, we also describe the surface of scales as phys-
ical structures, which have a fractal nature and can
reveal biologically meaningful information. The ridges
of the scale surface have fractal properties and are ori-
ented in one direction. The morphology of the an-
alyzed samples provides additional description about
the structural features of the butterflies’ wings 3D sur-
face topography. Both theory analysis and experimen-
tal results suggest that AFM, the statistical and fractal
analysis can provide additional insight into the wings
3D morphology and can be included in an algorithmic
mathematical model.
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Appendix

The basic properties of the height values distribution,
including its variance, skewness and kurtosis, com-
puted according the Ref. [12] is defined as follows:

• RMS value of the height irregularities: this quan-
tity is computed from data variance.

• Ra value of the height irregularities: this quantity
is similar to RMS value with the only difference in
exponent (power) within the data variance sum.
As for the RMS this exponent is q = 2, the Ra
value is computed with exponent q = 1 and abso-
lute values of the data (zero mean).

• Height distribution skewness: computed from 3rd

central moment of data values.

• Height distribution kurtosis: computed from 4th

central moment of data values.

• Mean inclination of facets in area: computed by
averaging normalized facet direction vectors.

• Variation, which is calculated as the integral of the
absolute value of the local gradient.
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