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Abstract. Using results of number theory we de-
velop an approximate statistical model of energy lev-
els of particles in a three-dimensional infinite potential
well depending on whether there is exactly one particle
or more than one particles in the well. The model is
used to perform a statistical inference about the num-
ber of particles in the well. The estimation procedure
is developed within the Bayesian framework.
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1. Introduction

An idealized statistical model of a potential well is con-
sidered in this article. Its link with some of known
results of number theory and quantum physics is de-
scribed.

Theoretical model of a finite potential square well
has found its application in theory of quantum well
lasers [8]. Quantum well structures can be grown by
Molecular Beam Epitaxy (MBE) [2] and then used in
active regions of lasers [1]. Models of finite potential
square wells can be approximated by a model of an
infinite potential square well.

We use number theory to describe and distinguish
energetic spectrum of a single particle enclosed within
a cubic potential well from energetic spectrum of total
energy of a system of several particles. Measured values

of total energy are used to estimate whether there is
only one or more particles in the potential well.

We are concerned with a well-known model of a
three-dimensional infinite potential square well. Infi-
nite depth of the well could be interpreted as the in-
finite stiffness of walls of this cube. Thus, a particle
does not loose anything of its energy by collisions with
walls. Potential energy V of a particle is equal to 0
inside the well and V =∞ outside. In other words, it
is impossible for a particle to leave the well.

Solving stationary Schrodinger equation we obtain
the energetic spectrum of a particle enclosed within a
cubic potential well with an edge of length l. It is given
by the formula

E = (a2 + b2 + c2)
~2π2

2ml2
, (1)

where m is a mass of the particle, ~ is the reduced
Planck constant, and a, b, c ∈ N, referred to as quan-
tum numbers, describe a state of the particle. For de-
tails see, e.g. [11].

It follows from the formula Eq. (1) that

E
~2π2

2ml2

= a2 + b2 + c2, (2)

belongs to the set of natural numbers. It means that
the rescaled energy on the left–hand side of Eq. (2) of
a single particle belongs to the set SE = {a2 + b2 + c2 :
a, b, c ∈ N}. We call this set an energetic spectrum.
From now on we assume that the total energy is ex-
pressed in this rescaled form.

We would like to estimate the probability that a ran-
domly chosen natural number from the interval 〈1, n〉,

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 296



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 15 | NUMBER: 2 | 2017 | JUNE

n ∈ N, belongs to the set SE . For "large" n we ap-
proximate this probability by the number

d(SE) = lim
n→∞

SE(n)

n
, (3)

where SE(n) is a number of elements of the set SE
which are less than or equal to n. The number d(SE)
is called the asymptotic density of the set SE .

2. Asymptotic Density of the
Spectrum

Asymptotic density of the set A ⊆ N, well-known con-
cept from number theory, is defined as follows.

Definition 1. Let A ⊆ N. A number of elements of
the set A ⊆ N, which are less than or equal to n, is
denoted by A(n). The number d̄(A), where

d̄(A) = lim sup
n→∞

A(n)

n
, (4)

is called upper asymptotic density of the set A and the
number d(A), where

d(A) = lim inf
n→∞

A(n)

n
, (5)

is called lower asymptotic density of the set A.

If d̄(A) = d(A), then value d(A) = d̄(A) = d(A) =

lim
n→∞

A(n)
n is called asymptotic density of set A.

We immediately obtain from the definition the fol-
lowing basic properties of asymptotic density, which
are further used.

Lemma 1. Let A ⊆ N. Then d̄(A) and d(A) exist and
the following statements hold:

1. d(N) = 1.

2. 0 ≤ d(A) ≤ d(A) ≤ 1.

3. Let K ⊆ N be a finite set. If d(A) exists, then it
holds that d(A ∪K) = d(A−K) = d(A).

4. Let A,D,Ω ⊆ N, A ∩ D = ∅ and A ∪ D = Ω.
If there exist d(Ω) and d(D), then it holds that
d(A) = d(Ω)− d(D).

5. Let A,D ⊆ N and A = N−D. If d(D) exists, then
d(A) = 1− d(D).

6. Let A ⊆ B ⊆ N and d(B) exists. It holds that
0 ≤ d(A) ≤ d(A) ≤ d(B) ≤ 1.

Proof. The statements follow from basic properties of
limes superior and limes inferior of sequences and from
the following facts:

• For every natural number n it holds 0 ≤ A(n) ≤ n.

• If K ⊆ N is a finite set, then there exists k ∈ N
such that for every sufficiently large n ∈ N it holds
A(n) ≤ (A ∪K)(n) ≤ A(n) + k and A(n) ≥ (A−
K)(n) ≥ A(n)− k.

• If A ∩ D = ∅ and A ∪ D = Ω, then for every
natural number n it holds Ω(n) = (A ∪ D)(n) =
A(n) +D(n).

• If A ⊆ B and d(B) exists, then ∀n ∈ N : A(n)
n ≤

B(n)
n and thus:

d(A) = lim sup
n→∞

A(n)

n
≤ lim sup

n→∞

B(n)

n
= d(B). (6)

We introduce two important theorems which we use
later to determine the asymptotic density of spectrum.

Theorem 1 (Legendre). Let n ∈ N. Then n can be
represented as n = a2 + b2 + c2, a, b, c ∈ Z if and only
if n 6= 4j−1(8k + 7), j, k ∈ N.

The proof can be found e.g. in [6].

Theorem 2 (Bachet’s conjecture). Every n ∈ N can
be represented as n = a2 + b2 + c2 + d2, a, b, c, d ∈ Z.

The proof can be found e.g. in [7].

We determine asymptotic density of energetic spec-
trum of a single particle at first.

Theorem 3. If SE = {a2 + b2 + c2 : a, b, c ∈ N}, then
d(SE) = 5

6 .

Proof. Let us denote B3 = {a2 + b2 + c2 ∈ N : a, b, c ∈
Z} a B2 = {a2 + b2 ∈ N : a, b ∈ Z}. Then

B3 −B2 ⊆ SE ⊆ B3. (7)

First, we determine d(B2). It is known (see [11]
and [5]) that B2(n) = c.n√

logn
+ o(1). Hence d(B2) =

limn→∞
B2(n)
n = 0.

We determine d(B3) now. Theorem 1 says that a
natural number n can be expressed as a um of three
squares of integers if and only if the number n does not
belong to the set A = {4j(8k−1) | j ∈ N∪{0}, k ∈ N}.
We can see that

B3 = N−A. (8)
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We prove that d(A) = 1
6 .

It can be easily verified that sets Aj = {4j(8k −
1) |k ∈ N}, j ∈ N ∪ {0} are pairwise disjoint and

Aj(n) =

[
1

4j
n

8
+

1

8

]
. (9)

Since A = ∪∞j=0Aj and sets Aj are pairwise disjoint,
it must hold

A(n) =

jn∑
j=0

[
1

4j
n

8
+

1

8

]
, (10)

where jn is the least integer such that there exists k ∈ N
satisfying 4jn(8k − 1) ≤ n. Hence

4jn(8 · 1− 1) ≤ n < 4jn+1(8 · 1− 1)

jn ≤
lnn− ln 7

ln 4
< jn + 1, (11)

and we find out that jn =
[
lnn−ln 7

ln 4

]
.

Thus

A(n)

n
=

1

n

[ lnn−ln 7
ln 4 ]∑
j=0

(
1

4j
n

8
+

1

8
− εj

)
, (12)

where 0 ≤ εj < 1.

With n → ∞ we obtain d(A) = 1
6 . From Eq. (8) it

follows that d(B3) = 1− 1
6 = 5

6 . And using Eq. (7) we
get

d(B3)− d(B2) ≤ d(SE) ≤ d(SE) ≤ d(B3)
5
6 − 0 ≤ d(SE) ≤ d(SE) ≤ 5

6

d(SE) =
5

6
. (13)

The following theorem will be useful in the next sec-
tion.

Theorem 4. Let Ek = {n21 + n22 + · · · + n2k :
n1, n2, . . . , nk ∈ N}. Then for every k ∈ N, k ≥ 4
it holds that d(Ek) = 1.

Proof. We will prove this theorem by induction with
respect to k. First, we will show that d(E4) = 1.

Let us denote B4 = {n21 + n22 + n23 + n24 :
n1, n2, n3, n4 ∈ Z}. Lagrange four square theorem (Ba-
chet’s conjecture) says that B4 = N. Furthermore, it
is known (see [3] and sequence A000534 in the OEIS)
that

E4 = B4 −A, (14)

where A = A1 ∪ A2 ∪ A3 ∪ A4, A1 =
{1, 3, 5, 9, 11, 17, 29, 41}, A2 = {2 · 4m : m ∈ N ∪ {0}},

A3 = {6 · 4m : m ∈ N ∪ {0}}, A4 = {14 · 4m : m ∈
N ∪ {0}}.

It is obvious that for a sufficiently large n it holds
A1(n) = 8, A2(n) =

[
lnn−ln 2

ln 4

]
, A3(n) =

[
lnn−ln 6

ln 4

]
and

A4(n) =
[
lnn−ln 14

ln 4

]
. Thus d(A1) = d(A2) = d(A3) =

d(A4) = d(A) = 0 and, using Eq. (14), it follows that
d(E4) = d(B4) = d(N) = 1.

Now, let us assume that d(Ek) = 1 and let us denote
B = {n21 + n22 + · · ·+ n2k + 12 : n1, n2, . . . , nk ∈ N}. It
holds that

B ⊆ Ek+1 ⊆ N. (15)

For a sufficiently large n it holds B(n) = Ek(n− 1).
Hence d(B) = d(Ek) = 1 and from Eq. (15) it follows
that d(Ek+1) = 1.

3. Statistical Inference

The three-dimensional infinite potential square well is
just a simplified model approximating physical poten-
tial wells which exist in real world. Even so, let us
assume that such potential wells are available and we
want to decide whether there is exactly one particle or
there are more particles in a particular well. For that
purpose we perform a virtual experiment based on re-
peated measurements of total energy of the system. We
assume certain “ideal” properties of the particles: They
are all of the same kind and they do not interact with
each other.

We already know that energy E of a single particle
belongs to the set SE (Eq. (2)) with the asymptotic
density 5

6 (Thm. 3). If there are k ≥ 2 particles in the
well, the total energy of the system is equal to a sum
of 3k squares of natural numbers. It means that in this
case (Thm. 4) the total energy of the particles can be
equal to an arbitrary value from N excluding a set of
zero asymptotic density.

Now, suppose, that we are able to change the en-
ergy in a potential well and measure it repeatedly.
Moreover, we suppose that the measurements are in-
dependent. Under appropriate conditions the asymp-
totic density of SE can be used to establish a statistical
model of observed energies depending on the number
of particles in the well. Particularly, if there is exactly
one particle in the well, then the energy is surely in
SE . If there are more than one particle, then we ap-
proximate the probability that the energy is in SE with
the asymptotic density d(SE). The model can be ac-
cepted under quite general conditions: Let us denote
with p(ε) the probability that a system with multiple
particles has energy equal to ε. The probability that
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the energy is in SE is then
∑
ε∈SE

p(ε). The approximate

equality ∑
ε∈SE

p(ε) ≈ d(SE), (16)

is satisfied, e.g., if the energy E is approximately uni-
formly distributed on a set {1, . . . , N}, where N ∈ N
is large enough so that SE(N)

N ≈ d(SE). Another con-
dition under which Eq. (16) is satisfied is that p(ε) is
concentrated on a discrete interval {M, . . . , N} where
M,N ∈ N are large enough so that

SE(N)− SE(M)

N −M
≈ d(SE), (17)

and points in SE are approximately uniformly dis-
tributed on {M, . . . , N}. For example, if M = 1, N =
104 and p(ε) is the probability mass function of the bi-
nomial distributions with parameters (104, 0.5), we get∑
ε∈SE

p(ε)− d(SE)
.
= −0.002.

Remark 1. We can verify whether measured energy E
belongs to SE algorithmically, see [9].

In what follows we derive a statistical procedure
through which the number of particles can be inferred.
Bayesian paradigm [10] is used for this purpose as it
allows to employ prior knowledge. In problems of this
type the prior information can be naturally acquired
from similar experiments.

3.1. Notational Remarks

In this section random variables are denoted by upper-
case Roman or Greek letters and their values by cor-
responding lowercase letters. However, often the ran-
dom variables and their values need not be formally
distinguished. In such cases lowercase letters are used
whereas the exact meaning is clear from the context.
All probability density functions – conditional as well
as non-conditional – are solely denoted by the sym-
bol f . Random variables to which they are related are
distinguished by the arguments. For example, f(x, y)
denotes the joint density of the random vector (X,Y )
at the point (x, y), f(x) is the marginal density of X
at x , and f(x|y) is the conditional density of X at
x given Y = y. By f(x|y = ξ) we denote the condi-
tional density of X at x given Y = ξ. Random vector
(X1, X2, . . . , Xt) and its value (x1, x2, . . . , xt) are de-
noted by X1:t and x1:t, respectively.

Throughout this section the distributions of random
variables are assumed to have densities with respect
to either Lebesgue measure on R or counting measure
on N0 = N ∪ {0}. Distributions of random vectors
are represented by densities with respect to a suitable
product measure.

3.2. Bayesian Approach

Within the Bayesian paradigm the beliefs about the
values of unknown quantities are represented with
probability measures. In other words, the unknown
quantities are taken as random quantities. Let θ be
an unknown (vector) parameter. Its probability den-
sity function f(θ), referred to as prior probability den-
sity, is determined by the statistician so that it reflects
the available prior information about θ, i.e., the knowl-
edge which is available before data are observed or pro-
cessed. The statistical model which describes depen-
dence of a random quantity x on the unknown parame-
ter θ is now understood as a conditional density f(x|θ).
After observing the value of x the conditional density
f(θ|x) represents the overall knowledge about the pa-
rameter θ. It can be taken as a prior knowledge com-
bined with the information acquired from data. The
conditional density f(θ|x) is referred to as posterior
density and relates to the model and prior density via
Bayes rule

f(θ|x) =
f(x|θ)f(θ)

f(x)
, (18)

where
f(x) =

∫
f(x|θ)f(θ)dθ. (19)

The integral Eq. (19) is understood as a Lebesgue inte-
gral over the range of θ with respect to the appropriate
measure.

Because the denominator in Eq. (18) is completely
determined by the product in the nominator the rela-
tion Eq. (18) can be shorten to

f(θ|x) ∝ f(x|θ)f(θ), (20)

where ∝ means proportionality up to a constant inde-
pendent of θ. Bayesian calculations are typically made
easier with this convention.

3.3. Statistical Model

In what follows it is assumed that individual realiza-
tions of a potential well are produced under identical
conditions, whereas the numbers of particles in indi-
vidual wells are independent. Each well is repeatedly
inspected by measuring the total energy of particles in
the system. Before each measurement the energy of the
system is randomly changed so that the energies mea-
sured for a particular well can be taken as independent
random quantities. Moreover, the energies are assumed
to be uniformly distributed over {1, 2, . . . , N} for some
large N ∈ N. For simplicity it is also assumed the same
number, say n ∈ N, of measurements is done for each
well.

Let ki be a number of particles in the i-th potential
well and Ei,j be a result of j-th energy measurement in
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the i-th well. We define the following random variables:

si =

{
0 if ki > 1,
1 if ki = 1,

(21)

mi =

{
0 if ∃j ∈ {1, 2, . . . , n} : Ei,j /∈ SE ,
1 if ∀j ∈ {1, 2, . . . , n} : Ei,j ∈ SE .

In words, si = 1 if there is a single particle in the i-
th well and mi = 1 iff all of the energy measurements
of the i-th system can be expressed as a sum of three
squares of natural numbers. The variables si are not
observed and constitute a part of unknown parameter
vector, whilemi are observed and their values represent
data.

The statistical model through which the data mi are
related to the unobserved states si is now given by

f(mi|si = 0) =

{
1−

(
5
6

)n
if mi = 0,(

5
6

)n
if mi = 1,

(22)

f(mi|si = 1) =

{
0 if mi = 0,
1 if mi = 1.

From the assumptions formulated at the beginning of
this subsection it follows that the parameters si can be
modelled as conditionally independent Bernoulli ran-
dom variables given the probability that a well con-
tains exactly one particle. This probability, denoted θ,
does not change across individual potential wells and
it is assumed to be unknown. Thus, θ is another part
of the parameter vector. The joint density of s1:t, for
any t ∈ N, given θ is then

f(s1:t|θ) =

t∏
i=1

f(si|θ), (23)

where
f(si|θ) =

{
1− θ if si = 0,

θ if si = 1.
(24)

To specify the prior density of the parameter (s1:t, θ)
completely it remains to select a marginal prior dis-
tribution of θ. For simplicity, the prior density is se-
lected as a beta density being a conjugate prior for the
Bernoulli model, i.e.,

f(θ) =


θα−1(1− θ)β−1

B (α, β)
for θ ∈ [0, 1],

0 for θ /∈ [0, 1].
(25)

B (·, ·) in Eq. (25) denotes the beta function. If no
relevant prior information is available before the first
measurement, the parameters can be set to (α, β) =
( 1
2 ,

1
2 ), which corresponds to a non-informative Jeffreys

prior for the Bernoulli model. For details see, e.g., [10].

The energy levels Eij and thus also data mi depend
only on the corresponding parameters si, i.e., given

si data mi are conditionally independent of all other
quantities. Particularly, for all t ∈ N we get

f(m1:t|s1:t, θ) =

t∏
i=1

f(mi|si). (26)

The joint density of m1:t, s1:t, θ thus can be factorized
as follows:

f(m1:t, s1:t, θ) =

(
t∏
i=1

f(mi|si)f(si|θ)

)
f(θ). (27)

The conditional independence structure can be rep-
resented through a directed acyclic graph (DAG) D =
(V,H) at Fig. 1 with V and H being a set of vertices
and a set of edges, respectively. Its vertices are the
random quantities θ, s1, . . . , st,m1, . . .mt. The joint
probability density function Eq. (27) is factorized with
respect to D in the following sense:

f(θ, s1, . . . , st,m1, . . .mt) =
∏
x∈V

f(x|Pa(x)), (28)

where Pa(x) denotes a random vector represented by
the parents of node x.

From Eq. (27) any conditional or marginal density
of interest can be derived. Namely, for the posterior
density of θ we get

f(θ|m1:t) ∝ f(m1:t|θ)f(θ) =

=
∑

s1:t∈{0,1}t

(
t∏
i=1

f(mi|si)f(si|θ)

)
f(θ) (29)

=

 t∏
i=1

∑
si∈{0,1}

f(mi|si)f(si|θ)

 f(θ).

Denoting vt =
∑t
i=1mi, the posterior density can be

written

f(θ|m1:t)

∝ θα−1(1− θ)β−1
((

1−
(
5
6

)n)
(1− θ)

)t−vt((
5
6

)n
(1− θ) + θ

)vt (30)

∝ θα−1
((

5
6

)n
(1− θ) + θ

)vt
(1− θ)β+t−vt−1,

for θ ∈ [0, 1] and f(θ|m1:t) = 0 for θ /∈ [0, 1].

The main concern is in a probability distribution of
a number of particles in, say, the (t + 1)-th system
given the measurements of the energies in the system
and all preceding measurements which serve as a source
of prior information about the (t + 1)-th system. The
conditional density f(st+1|m1:t,mt+1) can be again de-
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Θ

s1 s2 st· · ·

m1 m2 mt· · ·

Fig. 1: DAG representing conditional independence structure.

rived from Eq. (27) for (t+ 1) instead of t.

f(st+1|m1:t,mt+1) ∝ f(st+1,m1:t,mt+1)

=

∫ 1

0

∑
s1:t∈{0,1}t

f(s1:t,m1:t, θ) (31)

f(mt+1|st+1)f(st+1|θ)dθ

∝ f(mt+1|st+1)

∫ 1

0

f(st+1|θ)f(θ|m1:t)dθ.

Particularly, we get

f(st+1|m1:t,mt+1 = 0) =

{
1 if st+1 = 0,
0 if st+1 = 1,

(32)

and

f(st+1|m1:t,mt+1 = 1)

(33)

=



(
5
6

)n ∫ 1

0
(1− θ)f(θ|m1:t)dθ

Zt
if st+1 = 0,

∫ 1

0
θf(θ|m1:t)dθ

Zt
if st+1 = 1,

where

Zt =
(
5
6

)n ∫ 1

0

(1− θ)f(θ|m1:t)dθ+

∫ 1

0

θf(θ|m1:t)dθ.

(34)

3.4. Simulations

In this paragraph we give several illustrative examples
of posterior densities derived above. In all of the exam-
ples the prior density is selected as the Jeffreys prior.
We start with posterior densities f(θ|m1:t) estimated
from simulated data for various numbers of measure-
ments in each well, namely n = 2, 10, 20, and various
numbers of produced wells t. The true value of the

Fig. 2: Posterior density f(θ|m1:t) for t = 20, vt = 10, and
n = 1, 5, 10, 15, 20.

Fig. 3: Density f(st+1|m1:t,mt+1 = 1) at st+1 = 1 for t =
20, vt = 0, . . . , 20, and n = 1, . . . , 20.

parameter θ used for simulation is θ = 0.3. The pos-
terior densities are plotted in Fig. 4. From the graphs
it is seen how increasing number of observations, i.e.,
number of measurements in each well and/or number
of wells, provides more information about the unknown
parameter θ. With increasing number of observations
the posterior densities gradually concentrate about the
true value θ = 0.3.

Figure 2 illustrates five examples of posterior densi-
ties f(θ|m1:t) for different numbers of measurements n
in each well. Namely, we assume t = 20, vt = 10, and
n = 1, 5, 10, 15, 20. In this case the data are not sam-
pled. Instead, it is assumed that for 10 of the 20 wells
all measured energies were in the set SE . Although
t and vt are the same in all situations, the acquired
information about θ naturally varies with increasing
number of measurements n.

Finally, in Fig. 3 it is shown how the density
f(st+1|m1:t,mt+1) with mt+1 = 1 depends on previous
observations (represented by vt) for different n. For
t = 20, vt = 0, . . . , 20, and n = 1, . . . 20 the values of
f(st+1|m1:t,mt+1 = 1) at st+1 = 1 are plotted.
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(a) n = 2 (b) n = 2

(c) n = 10 (d) n = 10

(e) n = 20 (f) n = 20

Fig. 4: Posterior densities f(θ|m1:t) estimated from simulated measurements for n = 2, 10, 20 depending on a number of potential
wells t. True θ = 0.3.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 302



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 15 | NUMBER: 2 | 2017 | JUNE

4. Conclusions

The considered model of a potential well is definitely
an idealized one. In this case known results of number
theory can be used to derive a simple statistical model
of the energy levels. In the future it would be inter-
esting to compare the model with models constructed
under more realistic assumptions including, e.g., finite-
ness of the well or specific assumptions about particle
energies. Nevertheless, with more realistic models the
posterior and predictive densities will be intractable
and Monte Carlo algorithms or other approximation
techniques will be required.
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