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Abstract. This paper presents the Congestion Man-
agement (CM) methodologies and how they get modified
in the new competitive framework of electricity power
markets. When the load on the system is increased or
when some contingency occurs in the system, some of
the lines may become overloaded. Thus, the loadabil-
ity of the system should be increased by generating and
dispatching the power optimally for the secure opera-
tion of power system. In this paper, the CM problem
is solved by using the optimal rescheduling of generat-
ing units and load demands, and the Swarm intelligent
techniques are used to handle this problem. Here, the
CM problem is solved by using the Particle Swarm Op-
timization (PSO), Fitness Distance Ratio PSO (FDR-
PSO) and Fuzzy Adaptive-PSO (FA-PSO). First, the
generating units are selected based on sensitivity to the
over-loaded transmission line, and then these genera-
tors are rescheduled to remove the congestion in the
transmission line. This paper also utilizes the demand
response offers to solve the CM problem. The effective-
ness of the proposed CM methodology is examined on
the IEEE 30 bus and Indian 75 bus test systems.
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1. Introduction

In the deregulated power system, the challenge of Con-
gestion Management (CM) for the transmission system
operator is to create a set of rules that ensure sufficient
control over producers and consumers (generators and

loads) to maintain an acceptable level of power system
security and reliability in both the short term (real
time operation) and the long term (transmission and
generation construction) while maximizing the market
efficiency. The system is said to be congested when
the producers and consumers of electric energy desire
to produce in amounts that would cause the transmis-
sion system to operate beyond one or more transfer
limits. Congestion has direct impact on security and
reliability of the system. Discrete changes in system
configuration may result, due to some contingency or
outage rendering the system, into an unsecured state
and make other lines to undergo congestion too, result-
ing in dynamic congestion. Congestion Management
(CM), that is controlling the transmission system so
that the transfer limits are observed, is perhaps the
fundamental transmission management problem [1].

When a generator is a price taker, it can be shown
that maximizing its profit requires bidding its incre-
mental cost. When a generator bids other than its
incremental costs in an effort to exploit imperfections
in the market to increase profits, its behavior is called
strategic bidding. If the generator can successfully in-
crease its profits by strategic bidding or by any other
means than the lowering costs, it is said to have mar-
ket power and one of the main cause of market power
is congestion. Various approaches have been presented
in the literature for solving the CM problem. The gen-
eral methods adopted to relieve the congestion involve
the rescheduling of generator power outputs, provid-
ing the reactive power support, and curtail the load
demands/transactions. Optimal Power Flow (OPF)
based CM techniques are widely available in the lit-
erature [2].

A new Particle Swarm Optimization (PSO) tech-
nique to relieve the line congestion with minimum
rescheduling cost of generators is proposed in [3].
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A new CM strategy by generator rescheduling using
the Cuckoo Search algorithm is proposed in [4] to min-
imize the rescheduling cost of generators. A CM ap-
proach in a deregulated electricity market using im-
proved inertia weight PSO has been proposed in [5].
Reference [6] proposes a technique for optimum selec-
tion of participating generators using generator sensi-
tivities to the power flow on congested lines and mini-
mizes the deviations of rescheduled values of generator
power outputs from the scheduled levels. Reference
[7] proposes an Artificial Bee Colony algorithm which
was inspired by intelligent foraging behavior of hon-
eybee swarm to solve the CM problem based on the
generator rescheduling. Reference [8] proposes a CM
approach using the generator rescheduling and genetic
algorithm to identify the minimum cost of reschedul-
ing. Reference [9] proposes an approach to alleviate the
transmission congestion by using rescheduling of the
active and reactive power output of generators. Ref-
erence [10] proposes a transmission CM approach in
a restructured market environment using a combina-
tion of demand response and Flexible Alternating Cur-
rent Transmission System (FACTS) devices. A new
CM framework considering the dynamic voltage sta-
bility boundary of power system is proposed in [11].

Reference [12] presents an exhaustive and critical
review on the topic of CM. This review focuses on
the conventional methods of CM. A multi-objective
CM framework while simultaneously optimizing the
competing objective functions of CM cost, voltage
security, and dynamic security is proposed in [13].
A rescheduling CM based strategy in hybrid electricity
market structure for a combination of hydro and ther-
mal units is proposed in [14]. Reference [15] proposes
a one-step methodology for CM of a hybrid power mar-
ket that consists of a power pool and bilateral con-
tracts between the market participants. A new CM
method based on the voltage stability margin sensitiv-
ities is proposed in [16]. Reference [17] presents a price
volatility optimization methodology capable of assess-
ing demand response and willingness to pay factor in
real time by tracing each load for its competency to
retain its place in the market without/optimized cur-
tailment. A methodology of real-time CM of MV/LV
transformers is proposed in [18]. Reference [19] pro-
poses a generation rescheduling-based approach for CM
in electricity market using a novel ant lion optimizer
algorithm. Reference [20] investigates how the de-
mand management contracts can help the electricity
sector in both regulated and deregulated environments.
A demand-side based CM approach for managing
transmission line congestion has been proposed in [21]
for pool based electricity market model.

From the above literature, it is clear that the opera-
tional aspects of power systems pose some of the major
challenging problems encountered in the restructured

power industry. The present paper focuses on the CM
problem within an OPF framework in the restructured
power market scenario. The objective of the conven-
tional OPF problem is changed to include a mechanism
which enables the electricity market players to compete
and trade, while ensuring the system operation within
the security limits. The motivation of this paper is to
solve the CM problem by using the optimum reschedul-
ing of generators and load demands. The participating
generators are selected based on their sensitivity to the
overloaded line, and then these generators are resched-
uled to relieve the congestion in the transmission lines.
The proposed CM problem is solved using the PSO,
Fuzzy Adaptive PSO (FA-PSO) and Fuzzy Distance
Ratio PSO (FDR-PSO) algorithms. The simulation
results are performed on IEEE 30 and practical Indian
75 bus test systems.

The rest of the paper is organized as follows.
Section 2. presents the Congestion Management
(CM) problem formulation. The description of Swarm
intelligent techniques (such as PSO, FA-PSO and FDR-
PSO) are presented in Sec. 3. Section 4. presents
the simulation results and discussion. Section 5.
presents the contributions with concluding remarks.

2. Congestion Management
(CM): Problem Formulation

There are two broad paradigms that may be employed
to alleviate the congestion in the system. These are
the cost-free and the not-cost-free paradigms [22]. The
former includes actions like outaging of congested lines
or operation of phase shifters, transformer taps, or
FACTS devices. These means are termed as cost-free
only because the marginal costs involved in their usage
are nominal. The not-cost-free paradigm includes:

• Generation Rescheduling: This leads to generation
operation at an equilibrium point away from the
one determined by equal incremental costs. Math-
ematical models of pricing tools may be incorpo-
rated in the dispatch framework and the corre-
sponding cost signals are obtained. These cost
signals may be used for congestion pricing and
as indicators for the market participants to rear-
range their power injections/ extractions in order
to avoid such congestion.

• Prioritization and curtailment of
loads/transactions: A parameter termed as
willingness-to-pay-to-avoid-curtailment was intro-
duced in Reference [23]. This can be an effective
instrument in setting the transaction curtailment
strategies which may then be incorporated in the
OPF framework.
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These models can be used as part of a real-time open
access system dispatch module [24]. The function of
this module is to modify the system dispatch to en-
sure secure and efficient system operation based on the
existing operating condition. It would use the schedu-
lable resources and controls subject to their limits and
determines the required curtailment of transactions to
ensure uncongested operation of the power system [24].

Each generator in the power system has different sen-
sitivity to the power flow in an overloaded/congested
branch. A Generator Sensitivity (GS) to a line is de-
scribed as the ratio of change in the active power flow
in kth transmission line connected between the buses i
and j (i.e., ∆Pij) due to the change in power genera-
tion by gth generator (i.e., ∆Pg) [6], [7] and [8], and it
is represented as:

GSg =
∆Pij

∆Pg
. (1)

The generator sensitivity values are calculated con-
sidering the slack bus as reference. Therefore, the sen-
sitivity of slack bus/slack generator to any congested
transmission line in the system is always zero. Gener-
ators having the large and non-uniform values of sen-
sitivities are selected for the participation in the CM
by rescheduling their generation outputs. The basic
power flow equation on congested line can be written
as [6]:

Pij = −V 2
ijGij + ViVjGijcos (θi − θj) +

+ViVjBijsin (θi − θj) .
(2)

Neglecting the P-V coupling, the Eq. (1) can be ex-
pressed as:

GSg =
∂P ij

∂θi

∂θi
∂P g

+
∂P ij

∂θj

∂θj
∂P g

. (3)

In this paper, the CM problem is solved by consid-
ering the rescheduling of generating units, and also by
using demand response offers provided by the load de-
mands. The CM problem only by using the reschedul-
ing of generating units is formulated as [6]:

minimize,
Ng∑
g=1

Cp(∆Pg)∆Pg, (4)

where g = 1, 2, 3, . . . , Ng. Cg is the incremental and
decremental price bids submitted by the generating
units. These are the electricity prices at which the
generating units are willing to adjust their active power
outputs.

The CM problem using the rescheduling of gener-
ating units and demand response offers is formulated
as:

minimize,

Ng∑
g=1

Cg(∆Pg)∆Pg +

ND∑
k=1

Ck(∆Pshd,k)∆Pshd,k, (5)

where k = 1, 2, . . . , ND. The first term in the above ob-
jective function is the rescheduling cost of participating
generators and it is expressed as [25]:

Cg(∆Pg) = ag + bg∆Pg + cg∆P 2
g , (6)

where ai, bi, ci are the fuel cost coefficients of ith gen-
erating unit. The second term is the demand response
cost associated with the demand response offers pro-
vided by the load demands, and it is expressed as [25]:

Ck (∆P shd,k) = a′k + b′k∆P shd,k + c′k∆P 2
shd,k, (7)

where a′k, b
′
k, c

′
k are the cost coefficients of demand

response offers provided by the kth load demand.

The above objective functions (i.e., Eq. (4) and
Eq. (5)) are solved, subjected to the following con-
straints:

Ng∑
i=1

[GSg∆Pg] + F 0
l ≤ Fmax

l ,

l = 1, 2, . . . , Nl,

(8)

where F 0
l is the power flow caused by all contracts re-

questing the transmission line service. Fmax
l is max-

imum line flow limit of a transmission line connected
between buses i and j.

(Pg − Pmin
g = ∆Pmin

g ≤ ∆Pg ≤
leq
(
∆Pmax

g = Pmax
g − Pg)

)
,

(9)

where g = 1, 2, 3, . . . , Ng. Pmax
g and Pmin

g are maxi-
mum and minimum limits of generator power outputs.
The power balance equation is expressed by using:

Ng∑
i=1

∆Pg = 0. (10)

The demand response offers provided by the kth load
demand are restricted by [25]:

0 ≤ Pshd,k ≤ PDk − PDk,

K = 1, 2, . . . , Nd,
(11)

that is [26],

0 ≤ Pshd,k ≤ Pmax
shd,k,

K = 1, 2, . . . , Nd.
(12)

As mentioned earlier, in this paper, the proposed
CM optimization problem is solved using the intelligent
swarm techniques. The description of these techniques
is presented below.
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3. Swarm Intelligent
Techniques

In this paper, Particle Swarm Optimization (PSO),
FDR-PSO and FA-PSO are used to solve the CM prob-
lem. PSO is a population based stochastic optimiza-
tion technique developed by Eberhart and Kennedy
in 1995, inspired by social behavior of bird flocking
or fish schooling [27]. PSO shares many similari-
ties with evolutionary computation techniques like Ge-
netic Algorithms (GAs). The system is initialized with
a population of random solutions and searches for op-
timum by updating generations. In PSO, the particles
fly through the problem space by following current op-
timum particles [28].

3.1. Particle Swarm Optimization
(PSO)

PSO is initialized with a group of particles (solutions)
and then searches for optimum through a number of
generations. In each generation, each particle is up-
dated by following two best stored values. First one is
the best value that has seen so far, this is called pbest.
Another best value tracked by the particle swarm opti-
mizer is the best value obtained so far by any particle
in the population, this is called as gbest. PSO pro-
cedures based on the above concept can be described
as follows. Each particle tries to modify its position
using the current velocity and the distance from pbest
and gbest. The modification can be represented by the
concept of velocity. Velocity of each particle can be
modified by [29]:

V i+1
k = V i

k + c1r1
(
pbest,k − sik

)
+

+c2r2
(
gbest − sik

)
.

(13)

Using the above equation, a certain velocity that
gradually gets close to pbest and gbest can be calculated.
The current position can be modified by using:

si+1
k = sik + V i+1

k . (14)

This search procedure is called as Classical PSO. The
work of PSO is explained with help of the flow chart
shown in Fig. 1 [30].

Inertia weight parameter (ω): This parameter was
introduced to improve the performance of the original
PSO. This parameter plays the role in balancing the
global and local search capability of PSO. It can be
a positive constant or even a positive linear or non-
linear function of time. A better chance of finding the
global optimum within a reasonable number of itera-
tions can be achieved by incorporating this parameter

POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: XX | NUMBER: X | 2017 | MONTH 

© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 4 

PSO is a population based stochastic optimization 

technique developed by Eberhart and Kennedy in 1995, 

inspired by social behavior of bird flocking or fish 

schooling [27]. PSO shares many similarities with 

evolutionary computation techniques like genetic 

algorithms (GAs). The system is initialized with a 

population of random solutions and searches for optimum 

by updating generations. In PSO, the particles fly through 

the problem space by following current optimum 

particles [28]. 

 

3.1 Particle Swarm Optimization (PSO) 

    PSO is initialized with a group of particles 

(solutions) and then searches for optimum through a 

number of generations. In each generation, each particle 

is updated by following two best stored values. First one 

is the best value that has seen so far, this is called pbest. 

Another best value tracked by the particle swarm 

optimizer is the best value obtained so far by any particle 

in the population, this is called as gbest. PSO procedures 

based on the above concept can be described as follows. 

Each particle tries to modify its position using the current 

velocity and the distance from pbest and gbest. The 

modification can be represented by the concept of 

velocity. Velocity of each particle can be modified by 

[29],  

𝑉𝑘
𝑖+1 = 𝑉𝑘

𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑘 − 𝑠𝑘
𝑖 )

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡

− 𝑠𝑘
𝑖 )               (13) 

   Using the above equation, a certain velocity that 

gradually gets close to pbest and gbest can be calculated. 

The current position can be modified by using, 

         𝑠𝑘
𝑖+1

= 𝑠𝑘
𝑖

+ 𝑉𝑘
𝑖+1                                       (14) 

   This search procedure is called as Classical PSO. The 

work of PSO is explained with help of the flow chart 

shown in Fig. 1 [30]. 

Start

Initialize random particle positions and 

velocities. Set iteration count=0, gbest=0, pbest=0.  

No

Yes

Is convergence 

criteria reached?

Update particle velocities 

and positions

STOP

Assign fitness to each particle

Evaluate pbest and gbest particles

Increment 

iteration 

count

 
 

Fig. 1: Flow chart of PSO. 
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into the velocity update expression, and it is shown
below:

V i+1
k = ωV i

k + c1r1
(
pbest,k − sik

)
+

+c2r2
(
gbest − sik

)
.

(15)

The typical values of ω are in the range [0.9, 1.2].
Equation (15) consists of three terms [27]. The first
term is the inertia velocity of particle, which reflects
the memory behavior of particle; the second and third
parts are utilized to change the velocity of the parti-
cle. Particle velocities in each dimension are limited to
a maximum velocity Vmax whenever particle velocity
exceeds Vmax. Vmax is usually specified by the user.

3.2. Fitness Distance Ratio PSO
(FDR-PSO)

In the original PSO, each particle learns from its own
experience and the experience of the most successful
particle. From the literature, it has been proved that
the particle positions in PSO oscillate in damped si-
nusoidal waves until they converge to points between
their previous Pbest and gbest positions. During this os-
cillation, if a particle reaches a point which has better
fitness than its previous best position, then the parti-
cle continues to move towards the convergence of the
global best position discovered so far. All the particles
follow the same behavior to converge quickly to a good
local optimum of the problem.

In the FDR-PSO algorithm, in addition to the Socio-
cognitive learning processes, each particle also learns
from the experience of neighboring particles that have
a better fitness than itself. This approach results in
change in the velocity update equation, although the
position update equation remains unchanged. This al-
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Tab. 1: Fuzzy IF/THEN Rules for the Inertia Weight (ω) Correction.

Rule
Number

Antecedent Normalised
Fitness (NIFT)

Inertia Weight
(ω)

Consequent Inertia Weight
Correction (∆ω)

1 S (Small) S (Small) ZE (Zero)
2 S (Small) M (Medium) NE (Negative)
3 S (Small) L (Large) NE (Negative)
4 M (Medium) S (Small) PE (Positive)
5 M (Medium) M (Medium) ZE (Zero)
6 M (Medium) L (Large) NE (Negative)
7 L (Large) S (Small) PE (Positive)
8 L (Large) M (Medium) ZE (Zero)
9 L (Large) L (Large) NE (Negative)

gorithm outperforms PSO and many of the recent im-
provements of the PSO algorithm on many benchmark
problems, while being less susceptible to premature
convergence [31]. It selects only one other particle at
a time when updating each velocity dimension and that
particle is chosen to satisfy the following two criteria:

• It must be near the current particle.

• It should have visited a position of higher fitness.

The simplest way to select a nearby particle that sat-
isfies the above mentioned two criteria is to maximize
the ratio of the fitness difference to the one-dimensional
distance. In other words, the dth dimension of the ith
particle’s velocity is updated using a particle called the
nbest, with prior best position Pj . It is necessary to
maximize the Fitness Distance Ratio (FDR), and it is
expressed as [31]:

FDR =
cost (Pj)− cost(si)
|Pid − sid|

. (16)

In FDR-PSO algorithm, the particle’s velocity up-
date is influenced by the following three factors:

• Previous best experience i.e. Pbest of the particle.

• Best global experience i.e. gbest, considering the
best Pbest of all particles.

• Previous best experience of the “best nearest”
neighbor i.e. nbest.

Hence, the new velocity update equation becomes:

V k+1
id = ωV k

id + c1rand1 (Pid − sid) +

+c2rand2 (Pgid − sid) + c3rand3 (Pnd − sid) .
(17)

The position update equation remains the same as in
Eq. (14).

3.3. Fuzzy Adaptive PSO (FA-PSO)

Fuzzy Adaptive PSO (FA-PSO) [32] is developed to
design a fuzzy system to dynamically adapt the inertia

weight (Ω) for the CM problem. Table 1 presents the
Fuzzy IF/THEN rules. Equation (19), Eq. (20) and
Eq. (21) are used for the proposed FA-PSO algorithm.

To get a better Ω under fuzzy environment, the in-
puts i.e., fitness of current inertia weight, current loca-
tion (i.e., solution); and the output: correction of iner-
tia weight (∆Ω) are required to represent in fuzzy set
notations. All membership functions are considered in
triangular shape, and they are expressed in 3 linguis-
tic variables (S, M and L) for ‘Small’, ‘Medium’ and
‘Large’, respectively, as shown in Fig. 2. The values
of XS, XM and XL are selected from the previous ex-
perience. As mentioned earlier, it is most difficult to
form a crisp mathematical model for the adaptive PSO
to change the inertia dynamically. Therefore, a simple
IF/THEN rules are suitable to determine ∆Ω in the
FA-PSO process.
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triangular shape, and they are expressed in 3 linguistic 

variables (S, M and L) for ‘Small’, ‘Medium’ and 

‘Large’, respectively, as shown in Figure 2. The values of 

XS, XM and XL are selected from the previous experience. 

As mentioned earlier, it is most difficult to form a crisp 

mathematical model for the adaptive PSO to change the 

inertia dynamically. Therefore, a simple IF/THEN rules 

are suitable to determine Δω in the FA-PSO process. 

XS XM XL X

0.5

1

μ(x)

S M L

 

Fig. 2: Triangular Membership Function. 

Normalized Fitness: The fitness of current solution (i.e., 

location) is the most important to predict ω for the right 

choice of velocity. Here, we used normalized fitness 

(NFIT) value as an input to bound the limit between 0 & 

1. Normalized fitness (NFIT) is defined as,  

𝑁𝐹𝐼𝑇 =
𝑇𝐶− 𝑇𝐶𝑚𝑖𝑛

𝑇𝐶𝑚𝑎𝑥− 𝑇𝐶𝑚𝑖𝑛
                                (18)                             

  In the minimization problems, minimum value of NFIT 

denotes a better solution. In the FA-PSO algorithm, total 

cost (TC) from Equations (4) and (5) at first iteration may 

be used as TCmax for the next iterations. Only the least 

cost generator with unlimited power limits and without 

considering the constraints is used to determine the TCmin 

that satisfies the demand.  

Inertia Weight: Inertia weight (ω) is between 0.4 & 1.  

 

This range is fitted to the shape of triangular membership 

function.  

Current Inertia Weight Correction (Δω): We require both 

negative and positive corrections for ω. The change in 

inertia weight (Δω) is described in three linguistic 

variables (NE, ZE and PE) for ‘Negative’, ‘Zero’ and 

‘Positive’ corrections instead of (S, M and L). The 

selected range for Δω is between -0.1 to 0.1.  

IF/THEN Rules and Defuzzification: The simple 

IF/THEN rules for the inertia weight correction are 

presented in Table 1. There are 9 rules (3*3) for 2 input 

variables and 3 linguistic variables for every input 

variable. Generally, the fuzzy control inputs are crisp. 

Utilizing the arithmetic product, the degrees of fulfillment 

of the rules that are activated in Table 1, are determined. 

For every rule, the output (fuzzy Δω) is scaled in 

accordance with the DOF [32]. The final output value is 

the arithmetic sum of results obtained from activated 

Fig. 2: Triangular membership function.

Normalized Fitness: The fitness of current solution
(i.e., location) is the most important to predict ω for
the right choice of velocity. Here, we used Normalized
Fitness (NFIT) value as an input to bound the limit
between 0 & 1. Normalized Fitness (NFIT) is defined
as:

NFIT =
TC − TCmin

TCmax − TCmin
. (18)

In the minimization problems, minimum value of
NFIT denotes a better solution. In the FA-PSO al-
gorithm, Total Cost (TC) from Eq. (4) and Eq. (5) at
first iteration may be used as TCmax for the next it-
erations. Only the least cost generator with unlimited
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power limits and without considering the constraints is
used to determine the TCmin that satisfies the demand.

Inertia Weight: Inertia weight (ω) is
between 0.4 & 1. This range is fitted to the
shape of triangular membership function.

Current Inertia Weight Correction (∆ω): We re-
quire both negative and positive corrections for ω. The
change in inertia weight (∆ω) is described in three lin-
guistic variables (NE, ZE and PE) for ‘Negative’, ‘Zero’
and ‘Positive’ corrections instead of (S, M and L). The
selected range for ∆ω is between −0.1 to 0.1.

IF/THEN Rules and Defuzzification: The simple
IF/THEN rules for the inertia weight correction are
presented in Tab. 1. There are 9 rules (3 × 3) for
2 input variables and 3 linguistic variables for every
input variable. Generally, the fuzzy control inputs are
crisp. Utilizing the arithmetic product, the degrees of
fulfillment of the rules that are activated in Tab. 1,
are determined. For every rule, the output (fuzzy ∆ω)
is scaled in accordance with the DOF [32]. The final
output value is the arithmetic sum of results obtained
from activated rules. By using the Centriod Method,
the final output is defuzzified to a crisp value (∆ω).

ωij = ωij + ∆ωij , (19)

vij = ωij · vij + c1 · rand ·
(
pbestij − sij

)
+

+c2 · rand ·
(
gbestj − sij

)
,

(20)

sij = sij + vij , (21)

Binding Fitness: Fitness is an index which is used
to determine the superiority of an individual in the
swarm. Generally, the objective function is consid-
ered as the fitness function and inequality constraints
are changed to penalty terms, and these are added to
the objective function. The main drawback of this ap-
proach is that the best particle/individual can be mis-
judged as inappropriate for the penalty factors. How-
ever, usually, the penalty factors are assigned by an em-
pirical method and are deeply affected by the problem
model. To overcome this drawback, a binary fitness has
been used; one for the optimum objective function and
the other for binding constraints. Optimal objective
fitness is equal to the value of Eq. (4) or Eq. (5), which
describes the active power rescheduling cost, therefore
the congestion cost, i.e., the cost to relieve the conges-
tion. The fitness value of binding constraints is used
to scale the level of violation, and is calculated using:

Binding Fitness (Z) =

=

 Zmin − Z if Zmin < Z,
Z − Zmax if Z > Zmax,
0 otherwise,

(22)

where Z is value of inequality constraint. Zmin and
Zmax are minimum and maximum limits of inequality
constraints.

4. Results and Discussion

In this paper, IEEE 30 [33] and practical Indian 75 bus
[34] test systems are selected to show the effectiveness
and the suitability of the proposed algorithms applied
to solve the CM problem. The parameters selected
for PSO are: swarm/population size is 60, acceleration
constants C1 and C2 are 2, maximum number of gener-
ations is 500, maximum and minimum limits of inertia
weight are 0.9 and 0.1, respectively.

4.1. Simulation Results on IEEE 30
Bus Test System

IEEE 30 bus test system [33] consists of 6 generating
units, 24 load demands and 41 branches. It should be
noted, that the obtained generator sensitivity values
are the reference with respect to the slack bus. There-
fore, the sensitivity of the slack bus generator to any
congested line in the system is always zero. Here, two
case studies are performed, one is based on only gener-
ation rescheduling, and the other one is based on both
generators and load demands rescheduling. These case
studies are presented further:

1) Case 1: CM Based on Optimal
Rescheduling of Generators

In this case, only the participating generators are con-
sidered to be rescheduled to alleviate the congestion in
the system. The generator sensitivity factors for this
system are depicted in Fig. 3. Generators which are
participating in the CM are selected depending upon
their sensitivity to the overloaded/congested line. In
IEEE 30 bus system, all the generating units have
nearly same sensitivity to the line because it is a small
system. Here, the slack bus is selected by default as it
is the reference bus.
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Fig. 3: Sensitivity factors of generators for line 1 in IEEE 30 bus
system.

In this case study, the system is over-loaded by 19 %
to perform the CM. The scheduled power generation at
each selected bus before and after the CM is presented
in Tab. 2.
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Tab. 2: Scheduled power generation before and after the CM
for IEEE 30 bus system.

Scheduled
Generation

Before
the CM

After the Congestion
Management (CM)

Original PSO FA-
PSO

FDR-
PSO

PG1 (MW) 138 164.36 163.78 162.76
PG2 (MW) 57.56 68.36 66.23 69.90
PG5(MW) 24.56 22.88 15.38 24.76
PG8 (MW) 35 34.42 34.90 34.86
PG11 (MW) 17.93 19.93 24.01 20.45
PG13 (MW) 16.91 22.05 20.09 17.24

Figure 4 depicts the scheduled power generation in
per unit values before and after the CM using the PSO,
FDR-PSO and FA-PSO.

1 2 3 4 5 6
Bus (-)
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0.50
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1.50
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.)
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PSO
FAPSO
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Fig. 4: Scheduled active power generation in p.u. before and
after the CM in IEEE 30 bus system.

The simulation results after performing the CM are
presented in Tab. 3, Tab. 4 and Tab. 5. Table 3 presents
the line flows in a congested line in MVA before and af-
ter the CM. From Tab. 3, it can be seen that the power
flow in a line connected between buses 1 and 2 before
the CM is 132.6 MVA (but the maximum line flow
limit is 130 MVA), whereas after the CM using PSO,
FA-PSO and FDR-PSO algorithms are 125.89 MVA,
129.47 MVA and 126.34 MVA, respectively.

Tab. 3: Line flow in the congested line before and after the CM
for Case 1.

Overloaded
line flows
(in MVA)

Before
the
CM

After the CM

PSO FA-
PSO

FDR-
PSO

Line 1
(between

buses 1 and 2)
132.6 125.89 129.47 126.34

Table 4 presents the optimum cost, execution time
per iteration, total system losses and slack bus power
for IEEE 30 bus test system. The minimum oper-
ating cost obtained using the PSO, FDR-PSO and
FA-PSO algorithms are 956.85 $/hr, 950.92 $/hr and
931.34 $/hr, respectively. The execution time per gen-
eration for PSO, FA-PSO and FDR-PSO are 0.00487 s,
0.01658 s and 0.00393 s, respectively. Table 5 presents
the active and reactive flows in the congested line be-
fore and after the CM.

Tab. 4: Optimum cost, time per iteration, losses and slack bus
power after the CM for IEEE 30 bus system.

PSO FA-PSO FDR-PSO
Best Cost
($/MWh) 956.85 931.34 950.92

Worst Cost
($/MWh) 988.94 952.36 977.43

Mean Cost
($/MWh) 962.41 940.48 958.63

Time per
Iteration (s) 0.00487 0.01658 0.00393

Total System
Losses (MW) 13.98 13.92 13.96

Slack Bus
Power (MW) 183.36 190.57 184

Tab. 5: Active and reactive power flows in the congested line
before and after the CM.

Line
No.

Before
the CM

After the CM
using PSO

Active
power
flow
(Pij)
(MW)

Reactive
power
flow
(Qij)

(MVAR)

Active
power
flow
(Pij)
(MW)

Reactive
power
flow
(Qij)

(MVAR)
1 128.87 24.25 109.57 60.68

The above simulation results clearly indicate that
FA-PSO provides us with best solution since the costs
and losses in the system are lower when compared to
PSO and FDR-PSO.

2) Case 2: CM Based on Optimal
Rescheduling of Generators and Demand
Response Offers

As mentioned earlier, in this sub-section both genera-
tors and load demands are rescheduled to alleviate the
congestion in the system. In this case study, the system
load has been increased to 145 % to create the conges-
tion in the system. IEEE 30 bus system has 6 gener-
ating units and 21 load demands. In this paper, it is
assumed that the System Operator (SO) receives the
generator bids and demand response/load shedding of-
fers from customers to perform the CM analysis [26].
In this case study, it is assumed that the amount of
load shed at ith bus cannot be more than 30 % of load
demand at that bus.

Table 6 presents the optimal generation schedules
before and after the CM analysis for Case 2 using PSO,
FA-PSO and FDR-PSO algorithms. The line flows in
the congested lines before and after the CM are pre-
sented in Tab. 7. In this case, the transmission lines 1,
10 and 18 are overloaded/congested, and their power
flows are 143.13 MVA, 43.82 MVA and 36.08 MVA,
respectively. Whereas, the maximum power flow lim-
its of lines 1, 10 and 18 are 130 MVA, 32 MVA and
32 MVA, respectively. To overcome this situation, gen-
eration rescheduling and demand response are used.
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By using this, the congestion in the system has been
removed, and the power flows after the CM are pre-
sented in Tab. 7.

Tab. 6: Scheduled power generations before and after the CM
for IEEE 30 bus system (for Case 2).

PSO FA-PSO FDR-PSO
Best Cost
($/MWh) 956.85 931.34 950.92

Worst Cost
($/MWh) 988.94 952.36 977.43

Mean Cost
($/MWh) 962.41 940.48 958.63

Time per
Iteration (s) 0.00487 0.01658 0.00393

Total System
Losses (MW) 13.98 13.92 13.96

Slack Bus
Power (MW) 183.36 190.57 184

Tab. 7: Line flow in the congested line before and after the CM
for Case 1.

Overloaded
line flows
(in MVA)

Before
the
CM

After the CM

PSO FA-
PSO

FDR-
PSO

Line 1
(between

buses 1 and 2)
143.18 128.36 128.54 127.93

Line 10
(between

buses 9 and 4)
43.82 31.40 31.82 31.57

Line 18
(between

buses 13 and 15)
36.08 30.11 30.84 29.98

As mentioned earlier, in this paper, the CM has been
performed by using the PSO, FDR-PSO and FA-PSO
algorithms. Optimum total cost and losses obtained af-
ter the CM are presented in Tab. 8. The optimum costs
obtained by using PSO, FDR-PSO and FA-PSO algo-
rithms are 1413.7 $/hr, 1412.4 $/hr and 1408.5 $/hr,
respectively.

Tab. 8: Optimum total cost and losses obtained after the CM
for IEEE 30 bus system (for Case 2).

Scheduled
Generation

Before
the CM

After the Congestion
Management (CM)

Original PSO FA-PSO FDR-
PSO

PG1

(MW) 138 164.36 163.78 162.76

PG2

(MW) 57.56 68.36 66.23 69.90

PG5

(MW) 24.56 22.88 15.38 24.76

PG8

(MW) 35 34.42 34.90 34.86

PG11

(MW) 17.93 19.93 24.01 20.45

PG13

(MW) 16.91 22.05 20.09 17.24

4.2. Simulation Results on Practical
Indian 75 Bus Test System

The Indian 75 bus system [34] has 97 branches, 15 gen-
erators, 24 transformers and 12 shunt reactors. The
generator sensitivity factors for this system are de-
picted in Fig. 5. The generating units which participate
in the CM are selected depending upon their sensitivity
to the overloaded line.
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Fig. 5: Generator sensitivity factors for line 71 in practical in-

dian 75 bus test system.

In practical Indian 75 bus system, 11 out of 15 gener-
ators are selected for participation in the CM problem.
Here, the slack bus is selected by default as it is the
reference bus. Power generated at each selected bus
before and after the CM is shown in Tab. 9.

Tab. 9: Active power output before and after the congestion
management for Indian 75 bus system.

Scheduled
Generation

Before
the CM

After the Congestion
Management (CM)

Original PSO FA-PSO FDR-
PSO

PG3 (MW) 192 177 180 193
PG4 (MW) 117 96 100 91
PG5 (MW) 176 196 180 198
PG6 (MW) 97 105 120 108
PG7 (MW) 70 57 60 92
PG8 (MW) 75 97 80 90
PG10 (MW) 102 74 80 69
PG11 (MW) 123 125 109 109
PG14 (MW) 133 140 150 130
PG15 (MW) 442 452 454 443

Indian 75 bus system is already overloaded as line 71
is congested. The simulation results after performing
the CM are shown in Tab. 10 and Tab. 11. The power

Tab. 10: Line flow in the overloaded line before and after the
CM for Indian 75 bus system.

Overloaded
line flows
(in MVA)

Before
the
CM

After the CM

PSO FA-
PSO

FDR-
PSO

Line 1
(between

buses 1 and 2)
132.6 125.89 129.47 126.34
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Tab. 11: Cost, time per iteration, losses and slack bus power
after the CM for Indian 75 bus system.

PSO FA-PSO FDR-PSO
Best Cost

(in Rs/MWh) 5189.47 5075.44 5189.1

Worst Cost
(in Rs/MWh) 5243.81 5133.08 5213.77

Mean Cost
(in Rs/MWh) 5203.92 5098.34 5198.36

Time per
Iteration (s) 2.12 2.24 1.96

Total System
Losses (MW) 207.82 205.11 206.67

Slack Bus
Power (in MW) 1793.98 1788.78 1792.84

flow in the transmission line connected between buses
26 and 41 before the CM is 401.65 MW, whereas af-
ter the CM using the PSO, FA-PSO and FDR-PSO is
398.9 MW, 397.56 MW and 398.67 MW, respectively.
The optimum cost obtained using the PSO, FDR-PSO
and FA-PSO is 5189.47 Rs MWh, 5189.1 Rs MWh and
5075.44 Rs MWh, respectively. However, the execution
time per generation for PSO, FA-PSO and FDR-PSO
algorithms is 2.12 s, 2.24 s and 1.96 s, respectively.

From the above simulation results on IEEE 30 bus
and Indian 75 bus systems, it can be observed that FA-
PSO algorithm provides us with best solution since the
costs and losses in the system are lower when compared
to PSO and FDR-PSO algorithms. But, the FDR-PSO
algorithm takes less time to find a solution. FA-PSO
takes more time as it has to solve the fuzzy logic block
for each iteration.

5. Conclusion

Congestion Management (CM) using the optimal
rescheduling of active power generation and load de-
mands/demand response with Particle Swarm Opti-
mization (PSO), Fitness Distance Ratio-PSO (FDR-
PSO) and Fuzzy Adaptive-PSO (FA-PSO) algorithms
has been solved in this paper. Here, the generator
rescheduling is performed by taking into account the
minimization of generation scheduling cost while sat-
isfying all the line flow limits. Generators are selected
in accordance with their sensitivity to the overloaded
transmission line. The CM problem is modelled as
an optimization problem, and it is solved by using
the PSO, FDR-PSO and FA-PSO. The proposed CM
methodology is implemented on IEEE 30 bus and prac-
tical Indian 75 bus test systems. The simulation results
show that the FA-PSO gives optimum cost when com-
pared to other swarm intelligent algorithms, whereas
FDR-PSO takes lesser computational time to solve this
CM problem.
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Appendix A
Nomenclature

Tab. 12: Nomenclature.

Pg Active power output of generator g

Pij
Power flow on congested line ’k’

connected between the bus i and bus j

Pshd,k
Amount of demand response provided

by the kth load demand
Vi, θi Voltage magnitude and phase angle at ith bus

Gij , Bij
Conductance and susceptance of the line
connected between the buses i and j

Ng Number of participating generators
ND Number of loads/demands
Nl Number of transmission lines

∆Pg Active power adjustment of generator g

PDk
Lower bound on the decreased or

curtailed level of power consumption
PDk Power demand from kth load demand
Pmax
shd,k Maximum amount of load shed by kth load
Pnd Nearby particle which has better fitness
c1, c2 Constants
r1, r2 Random numbers between 0 and 1
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