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Abstract. A symmetric coupling of methods of finite
and boundary elements for numerical solution of tran-
stent eddy current problems is described. This is an
essential step in modelling of electromagnetic forming
of metalic sheets. The finite element method is em-
ployed in the conducting region of the metalic sheet.
The boundary element method relies on the Stratton-
Chu representation formula and it models the electro-
magnetic field in the air including its decay at infinity.
We impose external currents by the Biot-Savart law.
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1. Introduction

Eletromagnetic forming of metalic sheets relies on gen-
erating pulses of eddy currents, which are imposed by
a surrounding coil. This gives rise to the Lorentz forces
that are pushing the metalic sheet against a form. In
order to analyze and later optimize this metalurgical
process we shall model the transient eddy current prob-
lem and propose a numerical method that gives accu-
rate enough results. This is the aim of the present
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paper. Other parts of the model such as contact me-
chanics, plasticity, and eventually thermal distribution
shall be treated elsewhere.

We consider a domain Q™ c R? occupied by the
metalic sheet and the exterior Q¢ := R3 \ Qint, The
transient eddy current problem reads as follows: for
i € {int,ext} and (z,t) € Q' x Ry compute the distri-
butions of the magnetic strength density and the elec-
tric intensity

Hint t Qint
H(z,t) := (1) =ze ’
H™Y (2, t) x € Q%X
(1)
Eint t Qint
Be, 1) = | O (00w €,
Ext(z,t) x € Q™Y

respectively, that satisfy the low frequency case of
Maxwell’s equations

oH (:U7 )+ ﬁlcurl Ei(m, t) = 0,
curl H(z,t) — o'(x)E'(x,t) = J'(x,t),
divH'(z,t) = 0,
divE"(x,t) = 0. (2)

Here, po > 0 is the permeability of air, '™ > 0 is
the conductivity of the metallic sheet, o®*t := 0, J*** is
the impressed current density, and J™** := 0. The equa-
tions are completed by the transmission conditions: for
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(l’,t) S Ot % R+

H>(z,t) — H™(2,1) = 0,
E=(z,t) — E"'(z,t) = 0,

the decay conditions: for |z| — oo and ¢ € R4
(B ()], [H™ ()| — 0,
and the initial conditions: for x € R3

H(z,0) = E(z,0) = 0. (5)

There are several approaches to formulate the model
in the sense of distributions, which is the best-known
concept allowing for geometrical as well as material
singularities or jumps. Basically, there are potential-
based formulations [I1] and [I2], magnetic-field-based
(H-based) formulations [6] and [I5] and electric-field-
based (E-based) formulations [1], [2], [3], [4], [5], [10]
and [I7]. We prefer the latter approach, with which we
are experienced [13] and [I4].

The rest of the paper is organized as follows: In
Sec. we present the E-based variational formu-
lation in Q™ and a finite element discretization. In
Sec. [ 3.] we recall Stratton-Chu representation and
boundary element method (BEM) in the exterior. Sec-
tion [4."] is devoted to Hiptmair's symmetric FEM-
BEM coupling. In Sec. numerical results are
presented. We give conclusions in Sec.

2. E-Based FEM

After applying curl to the first equation in Eq. ,
0/0t to the second one, and adding both we arrive
(up to o) at the E-based formulation of Eq. (2): for
(w,t) € A x Ry

Ji%Ei(x,t)+ﬁcurlcurlEi(ac,t) = —2J(,1),

divEi(z,t) = 0. (6)
A wvariational formulation of Eq. was intro-
duced and analyzed in [4]. It reads as fol-

lows: find E™ € V = L2((0,T),H(curl; Q")) N
H' ((0,T), H ! (curl; Q™)) such that

9 int
- &E (x,t) - v(z)de

=:(M(0, E™),v)

Mo o

+ / curl E™ (z, ) - curl v(z) dz
Qint

=:(A(Ent),v)
- / YN BT (2, 1) -y v(a) dS(z) = 0, (7)

= (E(yn B").v)
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for all v € H(curl; Q™). Here, I' := Q" n is the
outer unit normal vector to 2™, and we define the
following Dirichlet and Neumann traces, respectively,

n(z) x (v(z) x n(z)),
curlu(z) x n(x).

Ypv(z) =

T ule) = )

The formulation is completed by a boundary condition
and the initial condition.

We approximate Sobolev space H(curl; Q") using
the lowest-order Nedelec-I finite elements [16]. We
search for a piecewise polynomial approximation

n

E™(z,t) ~ Z ei(t)pi(z),

i=1

9)

and arrive at the system of ordinary differential equa-
tions (ODEs): for t € R

Me™'(t) + A el (t) + f(yy EM™)(t) = 0, (10)
e"(0) = 0,
where we denote by M and A the so-called conductiv-
ity matrix and permittivity matrix, respectively. Yet f
is to be specified. We can solve the ODEs analytically
as far as we are able to find the eigenvalues A\ and the
eigenvectors of the matrix pencil A — AM. This can
be typically done for n < 103. Otherwise, we have to
employ a time-integration scheme.

Note that in a pure FEM the domain Q™ has to be
actually extended by a large portion of Q' so that
the support of J is included. On the boundary of this
extended domain the electric field is assumed to vanish,
thus, the boundary term f disappears. On the right-
hand side there is an extra term related to —0;J.

3. E-Based BEM

In the exterior domain we follow the approach of Hipt-
mair [I0]. We employ Stratton-Chu representation for-
mula: for (z,t) € Q" x Ry

E™(z,t) = W(ypE™(y,1))(z)
— V(wE™ (y, 1) () + N(=p0 Ty, 1)) (),

where

(11)

~ 1
VOW)e) = [ M) s, (12
is the vectorial single-layer operator,
W(u(y))(z) = V(n(y) x u(y))(=), (13)
is the Maxwell double-layer operator, and
1
N(g)@):= [ Bb) s, (19
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is the Newton potential (Biot-Savart law). Note that in
general there are two additional terms in the formula,
which vanish in our formulation.

Applying vp to the Stratton-Chu formula leads to
the first-kind boundary integral equation: for (z,t) €
I' x R+

vp B — v W(vpE™) + v, V(4 E™)

=~ B(7p E=*t)(z,1)

=iV (yn B (2,)
=p N(—p0o J}).
—_——
=:c(x,t)

(15)

Applying vy to Stratton-Chu formula gives rise to the
second-kind boundary integral equation: for (z,t) €
I' xRy

IN B = N W(’YDEEXt)(l’a t)— In {/(’YNEeXt)
=:—D(vp Eo<t)(x,t) =BT (vy EY)(z,t)
+ 8 N(=poJy) . (16)

=:b(t)

The boundary integral equations Eq. and Eq.
are again understood in the Sobolev variational frame-
work [7] and [8], which allows a stable boundary ele-
ment discretization. The discrete space consists of tan-
gential traces of Nedelec-I elements [16], the so-called
stream functions.

4. FEM-BEM Coupling

We need FEM to properly model the transient be-
haviour of eddy currents. However, FEM can approx-
imate decay condition Eq. only at the high cost of
additional volume discretization of a large portion of
Q% On the other hand, BEM models the decay con-
dition by definition, but it suffers from modelling of
transient fields in Q™. Fortunately, there is a natural
coupling of FEM and BEM, cf. [9]. It allows us to get
rid of the unknown Neumann boundary data ~y E™

in Eq. .

From Eq. we can eliminate the Neumann data
of the exterior field
=v!

YN Eext

(c+BHOE™).  (17)

Plugging the latter to Eq. we arrive at a boundary
integral equation with the exterior Steklov-Poincare
(Dirichlet-to-Neumann) operator S

N Eext —

—(D+BTV'B) 7, B _b—BTv-ic. (8
—_—

=:d

=:S
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Now the latter and transmission condition Eq. re-
places the boundary term in Eq.

V) + (A(E™),v) + (S(vp E™),7p v)r
—(d,ypvir. (19)

<M(atEint)7

Finally, we employ the finite element discretization
Eq. @D and arrive at ODEs: for ¢t € R,

Meint/(t)) + (A + (IF)T S IF) eim(t) = _d(t)7
=K
e™(0) = 0, (20)

where I is the restriction to the boundary degrees of
freedom (identity matrix completed by zeros). The re-
sulting FEM-BEM system of ODEs can be analytically
integrated in time

=% ([

mt

e i (t=7) d7> vi, (21)

where

KVi = )\iMVi, HVZHM =1 (22)

5. Numerical Results

We consider an axisymmetric setup of a coil and an
aluminium plate disc, see Fig.[Il The radius of the disc
is 8 cm and the disc is 2 mm thin. It is placed 2 mm
above the coil. The coil is modeled by 3 line circular
turns of radii ry, € {2.1,3.7,5.3} cm. Hence, we replace
the Newton potential by the following dimensionally-
reduced Biot-Savart law:

3 27
o
4;/

—sint, cost,0)

N = TE dt.
|z — 7k (cost,sint, 0)]]
(23)
The excited current pulse has the amplitude

I :=100 kA. The shape g(t) is half of the sine at fre-
quency f := 8.33 kHz,

o(t) = {Sin(27rft)7 i

We employ the particular solution approach: find
E"(z,t) = Ei*(z,t) + ¢'(t) N(z) so that EI € V,
E(z,0) =0, and

(O+K)EP,v) = —¢"(t) (N,v) Vv € H(curl; ™),
which is the counterpart to Eq. (19).

< o5
N j (24)

x,.;

In Fig. [2| we depict a comparison of eddy current
distribution and Lorentz forces computed by FEM and
FEM-BEM methods. The numbers of uknowns were
9751 in case of FEM and 800 in case of FEM-BEM. The
difference in the Lorentz force magnitudes is shown in
Fig.[3l The FEM-BEM results are, by definition, more
precise.
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Fig. 1: Geometry of the example. On the left figure a sketch of the device is depicted. The metalic plate (solid rectangle) is
pushed against the form (hatched object on the top). Outward and inward orientation of the currents in the three circular
turns is depicted with circles and crosses, respectively. The right figure shows the situation in 3D.
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Fig. 2: Comparison of eddy current distributions and Lorentz forces calculated by FEM (top figure) and FEM-BEM (bottom
figure) at the half-period of the pulse.
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Fig. 3: Evolution of the maximal Lorentz force density com-

puted by FEM (blue line) and FEM-BEM (red line)
methods.

6. Conclusion

We presented a coupling of FEM and BEM for solution
of transient eddy current problems that arise in the
process of electromagnetic forming of metalic sheets.
In our forthcoming work we shall complete the model
with contact mechanics, plasticity, and thermal field
distribution.
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