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Abstract. The existence of space filling curves opens
the way to reducing multivariate optimization problems
to the minimization of univariate functions. In this
paper, we analyze the Hoelder continuity of space
filling curves and exploit this property in the solu-
tion of global optimization problems. Subsequently,
an algorithm for minimizing univariate Hoelder contin-
uous functions is presented and analyzed. It is shown
that the algorithm computes the approximate minimum
with the guaranteed precision. The algorithm is tested
on some types of two-dimensional functions.
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1. Introduction

Many engineering problems lead to a multivariate
global optimization. Such issue can be difficult
to solve. An approach presented in this paper is to turn
the problem into its one-dimensional equivalent. A way
how to provide such simplification is to use a space fill-
ing curve.

This paper deals with the problem of searching
a global minimum

F (y∗) = min
y∈ D

F (y), (1)

and a global minimizer y∗ ∈ D, where D is an N -
dimensional hypercube defined as follows

D = {y ∈ RN ,−1

2
≤ yj ≤

1

2
, 1 ≤ j ≤ N}. (2)

The objective function F is assumed to satisfy
the Lipschitz condition with a constant L, 0 < L <∞.

The main idea of the paper is to turn the multivariate
optimization problem into its one-dimensional equiva-
lent, which can be solved using some techniques evolved
for univariate optimization. One way how to do so
is to develop a continuous correspondence y map-
ping a one-dimensional interval onto the hypercube.
The problem Eq. (1) turns into the following one

F (y∗) = F (y(x∗)) = min
x∈[0,1]

F (y(x)), (3)

where x∗ ∈ [0, 1]. A complete analysis is done to prove
that a univariate algorithm based on Hoelder continu-
ity can be used to find an approximation of the opti-
mal value of F over the domain D. The performance
of the algorithm is illustrated by numerical experi-
ments.

2. Space Filling Curves

Main ideas in this section are inspired by [1] and [3].

Definition 1. A space filling curve is a single-valued
continuous correspondence y mapping the unit interval
[0, 1] onto the hypercube D from Eq. (2).

If y is a space filling curve, then

F (y∗) = min
x∈ [0,1]

F (y(x)). (4)

Though the concept of a space filling curve is useful
for the analysis of the algorithm, the effective compu-
tation is usually based on a continuous correspondence
yn mapping the unit interval only into D. The follow-
ing theorem gives some information about the optimal
value of F ◦ yn using the quality of yn.

Theorem 1. Let (yn), where yn : [0, 1]→ D, be a se-
quence of curves such that

sup
y∈ D

dist(yn([0, 1]), y) =: εn → 0, (5)
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for n → ∞ and let (x∗n) be an arbitrary sequence
in [0, 1] satisfying

F (yn(x∗n)︸ ︷︷ ︸
=:y∗n

) = min
x∈ [0,1]

F (yn(x)). (6)

Then:

1 . (∀n ∈ N) : 0 ≤ F (y∗n)− min
y∈ D

F (y) ≤ Lεn, (7)

2. if ỹ ∈ D is an accumulation point of (y∗n), then
F (ỹ) = miny∈ D F (y).

Proof.
1. Let us assume that

F (y∗) := min
y∈ D

F (y) ≤ F (y∗n) ≤ F (yn(xn)), (8)

where xn ∈ [0, 1] is chosen so that

‖yn(xn)− y∗‖ ≤ εn.

Hence

0 ≤ F (y∗n)− F (y∗) ≤ F (yn(xn))− F (y∗) ≤
≤ L(‖yn(xn)− y∗‖) ≤ Lεn.

(9)

The last inequality is based on the Lipschitz continuity
of F on D and on the quality of yn. This completes
the proof of Eq. (7).
2. If ỹ is an accumulation point of (y∗n), then there
exists a subsequence (for the sake of clarity labeled
the same way as the original sequence) such that

y∗n → ỹ. (10)

Using the continuity of F leads to

F (y∗n)→ F (ỹ), (11)

but, from Eq. (9), we also get

F (y∗n)→ F (y∗). (12)

It follows that

F (ỹ) = F (y∗) = min
y∈ D

F (y). (13)

Remark 1. If y∗ = arg miny∈ D F (y) is unique, then

y∗n → y∗. (14)

Using yn reduces the multidimensional optimiza-
tion problem into its one-dimensional equivalent
that can be solved by univariate algorithms. If
such method provides a lower bound Mn of the one-
dimensional function F ◦ yn, then Mn is obviously
a lower bound of F along yn. Is it possible to establish
a lower bound for F over the whole D? The following
theorem gives an answer.

Theorem 2. Assume that the curve yn, n ∈ N, sat-
isfies the assumptions of Thm. 1 and

(∀x ∈ [0, 1]) : Mn ≤ F (yn(x)). (15)

Then the value

M = Mn − Lεn (16)

is a lower bound of F over the entire D, i.e.

M ≤ min
y∈ D

F (y). (17)

Proof. Using the result and notation of the previous
theorem, we get

(∀y ∈ D) : F (y) ≥ F (y∗) = (F (y∗)−
−F (yn(xn))) + F (yn(xn)) ≥ −Lεn +Mn.

(18)

In what follows, we assume that F ◦ yn is Hoelder
continuous with some real constantsH ≥ 0, α ∈ (0, 1〉,
i.e.

(∀x′, x′′ ∈ [0, 1]) :
|F (yn(x′))− F (yn(x′′))| ≤ H|x′ − x′′|α. (19)

Let us describe such curve for N -dimensional case.
At first, divide the domain D into 2N equal hyper-
cubes. Number all of the subcubes using the index z1,
0 ≤ z1 ≤ 2N − 1. Each subcube with the index z1 is
designated D(z1). Moreover,

D =

2N−1⋃
i=0

D(zi). (20)

Using the same approach, divide each of the sub-
cubes from the previous partitioning into 2N equal sub-
cubes and number them with the index z2, 0 ≤ z2 ≤
2N − 1. Each subcube of the second partitioning is
now designated D(z1, z2). Continuing the same pro-
cess we get hypercubes D(z1, z2, . . . , zM ) and the edge
length will be 2−M . The total number of the subcubes
in M -th partition will be equal to 2MN and

D ⊃ D(z1) ⊃ D(z1, z2) ⊃ . . .
· · · ⊃ D(z1, z2, . . . , zM ).

(21)

Now cut the interval [0, 1] into 2N equal subintervals.
Every single part is designated d(z1), 0 ≤ z1 ≤ 2N −
1. In the same manner, cut all the subintervals once
again, etc. Continuing the same process we get 2MN

subintervals with the length equal to 2−MN , which are
designated d(z1, z2, . . . , zM ). Moreover,

[0, 1] ⊃ d(z1) ⊃ d(z1, z2) ⊃ . . .
· · · ⊃ d(z1, z2, . . . , zM ).

(22)
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Fig. 1: The first and the second partition of the unit interval.

The process is illustrated by Fig. 1. The interval
d(z1, z2, . . . , zM ) can be also written as

d(z1, z2, . . . , zM ) = [x, x+ 2−MN ], (23)

and can be referred to as d(M,x). The correspond-
ing subcube D(z1, z2, . . . , zM ) is designated D(M,x).
The process of partitioning has to satisfy the following
condition.

Condition 1. If the subintervals d(M,v′) and
d(M, v′′), M ∈ N, have a common end point, then
the corresponding subcubes D(M,v′) and D(M,v′′)
have a common face.

Now consider a space filling curve y : [0, 1]
onto→ D

such that

(∀M ∈ N0) : y(d(z1, . . . , zM )) ⊂ D(z1, . . . , zM ). (24)

Then F ◦ y is Hoelder continuous with the constants
2L
√
N + 3 and 1

N , i. e. for all x′, x′′ ∈ [0, 1]

|F (y(x′))−F (y(x′′))| ≤ 2L
√
N + 3(|x′− x′′|) 1

N . (25)

The proof can be found in [1]. In what follows, we
use Hilbert-type curves. The process of partitioning
for two-dimensional Hilbert-type curve is illustrated
by the following figure.

Fig. 2: The first and the second partition of the cube D for two-
dimensional Hilbert-type curve.

For the practical computation, we use only "iterates"
of the Hilbert curve. Consider the result of the M -th

partition illustrated in this section. The construc-
tion of the "M -th iteration" of the Hilbert curve yM is
described for example in [1] and [3]. The curve

yM : [0, 1]
into→ D, (26)

satisfies the following properties. Let 0 = x0 < x1 <
· · · < x2MN = 1 be the end points of the subintervals
d(z1, . . . , zM ) and let

yi := yM (xi), i ∈ {0, . . . , 2MN}. (27)

Then

yM (x) = yi + (yi+1 − yi)2MN (x− xi), (28)

‖yi+1 − yi‖ ≤ 2−M , (29)

where x ∈ [xi, xi+1], i ∈ {0, . . . , 2MN − 1}, and

(∀K < M) : xi ∈ d(z1, . . . , zK)⇒
yi ∈ D(z1, . . . , zK).

(30)

The curves yM for M = 0, 1, 2 and N = 2 are
illustrated by Fig. 3. The construction of the curves

Fig. 3: Iterations of the Hilbert curve for N = 2.
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is based on complex transformations and is completely
described in [3]. The next goal is to prove that also F ◦
yM satisfies the Hoelder condition similar to Eq. (25).

Theorem 3. The function F ◦ yM , M ∈ N, fulfills
the Hoelder condition with the constants 2L

√
N + 3

and 1
N on interval [0, 1], i.e. for all x′, x′′ ∈ [0, 1]

|F (yM (x′))− F (yM (x′′))| ≤
≤ 2L

√
N + 3(|x′ − x′′|) 1

N .
(31)

Proof. Let x′, x′′ ∈ [0, 1], x′ 6= x′′. Then there exists
n ∈ N0 such that

2−(n+1)N ≤ |x′ − x′′| ≤ 2−nN . (32)

The proof can be divided into two parts.
1. Suppose that n ≥M . If x′ and x′′ are from the same
subinterval d(M,xi), then, according to the proper-
ties of yM , the points yM (x′) and yM (x′′) belong
to the same linear segment with end points yi, yi+1.
From Eq. (28), Eq. (29) and Eq. (32), we get

‖yM (x′)− yM (x′′)‖ ≤ ‖yi + (yi+1 − yi)2MN ·
·(x′ − xi)− yi − (yi+1 − yi)2MN (x′′ − xi)‖ =

= 2MN‖yi+1 − yi‖|x′ − x′′| ≤ 2MN2−M2−nN .

(33)

Using the first inequality in Eq. (32), it follows that

‖yM (x′)− yM (x′′)‖ ≤
≤ 2(M−n)(N−1)2|x′ − x′′|1/N ≤ 2|x′ − x′′|1/N .

(34)

Hence

|F (yM (x′))− F (yM (x′′))| ≤
L‖yM (x′)− yM (x′′)‖ ≤ 2L|x′ − x′′| 1N .

(35)

If x′ ∈ d(M,xi) and x′′ ∈ d(M,xi+1), then
the points yM (x′), yM (x′′) belong to two different seg-
ments with a common end point yi+1. Using the pre-
vious result, we get

‖yM (x′)− yM (x′′)‖ ≤ ‖yM (x′)− yi+1‖+
+‖yM (x′′)− yi+1‖ ≤ 4|x′ − x′′|1/N .

(36)

Hence

|F (yM (x′))− F (yM (x′′))| ≤ 4L|x′ − x′′| 1N . (37)

2. Now suppose that n ∈ N0, n < M . If x′, x′′ are both
from d(n, x̃i), then, from Eq. (30), yM (x′), yM (x′′) ∈
D(n, x̃i). The maximal distance can be estimated as
follows

‖yM (x′)− yM (x′′)‖ ≤ 2−n
√
N. (38)

If x′ ∈ d(n, x̃i), x′′ ∈ d(n, x̃i+1),
then yM (x′) ∈ D(n, x̃i) and yM (x′′) ∈ D(n, x̃i+1).
According to the Cond. 1, D(n, x̃i) and D(n, x̃i+1) are
contiguous. Therefore

‖yM (x′)− yM (x′′)‖ ≤ 2−n
√
N + 3. (39)

Using Eq. (32), we can derive the final estimate

‖yM (x′)− yM (x′′)‖ ≤ 2
√
N + 3|x′ − x′′|1/N . (40)

Since the function F is Lipschitz continuous, it follows
that

|F (yM (x′))− F (yM (x′′))| ≤
≤ L‖yM (x′)− yM (x′′)‖ ≤
≤ 2L

√
N + 3|x′ − x′′|1/N ,

(41)

which completes the proof.

Remark 2. Let MM be the lower bound of F ◦yM and
let N = 2. Then

(∀y ∈ D) : MM − L2−M ≤ F (y). (42)

3. Optimization Algorithm

The algorithm itroduced in this section is inspired
by [1], [2] and is designed for the optimiza-
tion of the univariate functions that are Hoelder con-
tinuous. Consider g : [a, b]→ R satisfying the Hoelder
condition with the constantsH, α, a, b ∈ R, a < b. Let
x0, x1, . . . , xn be the trial points obtained in the pre-
vious iterations. These points divide [a, b] into n in-
tervals. Let Ii be an interval with end points xj , xk
that are consecutive, j, k ∈ {0, . . . , n}, xj < xk. Then
the lower bounding function on the interval Ii is con-
structed as follows:

lni (x) := max{lLi (x), lRi (x)}, (43)

where
lLi (x) = g(xj)−H(x− xj)α, (44)

lRi (x) = g(xk)−H(xk − x)α. (45)

The functions lLi and lRi are illustrated by Fig. 4. It
can be shown that the function

Ln(x) := lni (x), x ∈ Ii, i ∈ {0, . . . , n− 1} (46)

is a lower bounding of g over [a, b].

Fig. 4: The functions lLi and lRi .
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The algorithm computes a value yi ∈ Ii as an x coor-
dinate of the intersection of lLi and lRi . Then, the char-
acteristic Mi is computed in the following way

Mi = lLi (yi) = lRi (yi). (47)

It is true that Mi ≤ inf{g(x), x ∈ Ii}. In Fig. 4, we
can see a graphical interpretation of yi and Mi.

The interval It with the lowest value of Mt is chosen
and xn+1 := yt becomes the next trial point, that di-
vides It into two subintervals. For both of them,
new characteristics are computed. The algorithm goes
on until

diam(It) ≥ δ. (48)

Let us denote the approximation of the minimizer
generated by the algorithm by x̄. Let ε be the de-
sired precision of the algorithm, i.e. the goal is to find
x̄ ∈ [a, b] such that

g(x̄)− min
x∈ [a,b]

g(x) ≤ ε. (49)

The value δ = δε in Eq. (48) can be chosen so that

δ ≤ 2
( ε
H

) 1
α

. (50)

The steps of the algorithm can be described as follows:

• first iteration: Set x0 = a and x1 = b
and compute the values g(x0) and g(x1). Then
the functions lL0 and lR0 are constructed, similarly
to the Fig. 4. The point y0 is found as the x coor-
dinate of their intersection and the characteristic
M0 is computed using Eq. (47). If M0 = g(y0),
the optimization is done and x̄ = y0. Otherwise,
the algorithm sets the next trial point x2 = y0,
that divides I0 into two subintervals, I0 = [x0, x2]
and I1 = [x2, x1]. For both intervals, the values
y0, y1 and the corresponding characteristics M0,
M1 are computed.

• n-th iteration Let x0, x1, . . . , xn be the trial
points gained from the previous iterations,
not necessarily sorted. Let I0, I1, . . . , In−1 be
the intervals (generated in the previous steps)
with the end points xi, i ∈ {0, . . . , n}.
These intervals are characterized by the values
y0, y1, . . . , yn−1 and M0,M1, . . . ,Mn−1 computed
in a way described above. The algorithm chooses
the interval It such that

Mt = min{M0,M1, . . . ,Mn−1}, (51)

and sets xn+1 = yt. If Mt = g(yt), then
x̄ = yt and the optimization is done. Otherwise,
the point yt divides It into two subintervals, It and
In. For both subintervals, the points yt, yn and
the characteristics Mt, Mn are computed. If

diam(It) ≤ δ, (52)

the algorithm computes the approxima-
tion of the optimal value

g∗ = min {g(xi), 0 ≤ i ≤ n+ 1}, (53)

and the minimizer

x̄ = arg min {g(xi), 0 ≤ i ≤ n+ 1}. (54)

Otherwise, the next iteration is done
in the same manner.

For illustration, the first 6 iterations for the function

g(x) = (x− 0.3)2 + 1, (55)

on the interval [0, 1] were chosen. The red lines illus-
trate the curves lLi and lRi and the optimal values ofMi

are marked by the red dots.
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Fig. 5: First 6 iterations for the function from Eq. (55).

The algorithm can be used to compute the optimal
value of F along the curve yM . As we have shown
in the previous section, the function F ◦ yM is Hoelder
continuous on [0, 1] with the constants α = 1

N and
H = 2L

√
N + 3. In the following observations, we

assume that N = 2. We get

sup
y∈ D

dist(yM ([0, 1]), y) =
1

2M
. (56)
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Let us return to the problem Eq. (1). If ε > 0 is
a desired precision, i.e. if we want to find ȳ ∈ D such
that

F (ȳ)− min
y∈ D

F (y) ≤ ε, (57)

then we can choose the parameters M and δ so that

M ≥ log2

2L

ε
, (58)

δ ≤ 2
( ε

2H

)2
. (59)

To prove the statement, we use Thm. 1, the quality
of yM , the inequality Eq. (50) and a triangular inequal-
ity and we get

|F (ȳ)− min
y∈ D

F (y)| ≤ |F (ȳ)− min
x∈ [0,1]

F (yM (x))|+

+| min
x∈ [0,1]

F (yM (x))− min
y∈ D

F (y)| ≤ ε

2
+
ε

2
= ε.

(60)

The algorithm described above is rather theoreti-
cal. For the practical computation, some simplifica-
tions have to be made.

For the two-dimensional case it is not difficult
to compute the intersection of lLi and lRi , but
for the high-dimensional problem it is more useful
to approximate lLi and lRi by two lines, as we can see
in Fig. 6. The value ỹi can be computed as the first

Fig. 6: The approximations of lLi and lRi .

coordinate of their intersection and

M̃i = min{lLi (ỹi), l
R
i (ỹi)}. (61)

It is also more convenient to use an approximated
value of the Hoelder constant. In [2], two possible ap-
proximations are proposed.

The choice of the interval It can be improved. Two
methods are presented in [2].

4. Numerical Experiments

For our experiments, three types of functions were cho-
sen. Let us start with the function

F1(x, y) = (x− 0.3)2 + (y − 0.7)2 + 1. (62)

It is not difficult to realize that y∗ = [0.3, 0.7] and
F (y∗) = 1. The algorithm was tested for M =
1, 2, . . . , 10 and the precision 10−3. The results are
summarized in the Tab. 1.

Tab. 1: Results summarization.

M F (yM (x))− F (y∗) yM (x) ‖yM (x)− y∗‖
1 4 · 10−2 [0.2998,0.5000] 0.2000
2 2.5 · 10−3 [0.3009,0.7500] 0.0500
3 5.1 · 10−3 [0.2500,0.7518] 0.0720
4 1.5 · 10−4 [0.3125,0.7016] 0.0126
5 1.5 · 10−4 [0.3016,0.6875] 0.0126
6 7.6 · 10−5 [0.3082,0.7031] 0.0087
7 1.1 · 10−4 [0.2891,0.6994] 0.0110
8 5.6 · 10−5 [0.2930,0.7026] 0.0075
9 2.9 · 10−5 [0.2949,0.7019] 0.0054
10 1.8 · 10−5 [0.2959,0.7013] 0.0043

In Fig. 7, we can see the solution for M = 5.
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Fig. 7: The function F1 together with the fifth level of the
Hilbert curve and the approximate minimizer.

Consider next the multiextremal function

F2(x, y) = −0.5 sin(2πx) sin(2πy) + 1. (63)

The algorithm found one of the minimizers and the re-
sult is illustrated by Fig. 8.

The last tested function is

F3(x, y) =
√

(x− 0.6)2 + (y − 0.4)2 + 0.5. (64)

As we can be seen Fig. 9, the algorithm works also
for the nonsmooth function.
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Fig. 8: The function F2 together with the fifth level of the
Hilbert curve and the approximate minimizer.
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Fig. 9: The function F3 together with the fifth level of the
Hilbert curve and the approximate minimizer.

5. Conclusion

In this paper, we described a minimization algorithm
based on reducing the problem by means of Hilbert-
type space filling curve. Subsequently, complete math-
ematical analysis was done to show that the func-
tion F ◦ yM is Hoelder continuous. Thus an algorithm
for minimizing univariate Hoelder continuous functions
could be used to find an approximation of the optimal
value of F . It was shown that the algorithm computed
the approximate minimum of F with the guaranteed
precision. The algorithm and the analysis will be ex-
tended for the dimensions N > 2 and used for some
practical problems of the multivariate optimizations.
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