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Abstract. One-dimensional dynamical systems at-
tract researches for more than half a century and the
topic was inspired by many real problems. Mainly
piecewise linear and polynomial maps were considered
and researched under several motivations from differ-
ent scientific fields. As a main aim of the paper, the
Logistic (polynomials of the second order) and the Tent
(piecewise linear maps with two pieces) families are
considered and studied. The dynamical properties of
both families are derived using bifurcation diagrams,
Lyapunov exponents, and newly established techniques
like the 0-1 test for chaos and recurrence matrices.
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1. Introduction

Many phenomena coming from various scientific disci-
plines are described by discrete dynamical system

xn+1 = f(xn), n = 0, 1, 2, . . . , (1)

where points xn belong to a compact metric space X
and f : X → X is a continuous transformation. The
main aim of the theory of discrete dynamical systems
is centred on the understanding how the trajectories of
all points from X look like.

Classical discrete dynamical systems have been

highly considered in the literature (see e.g. [1] or [2])
because they are good examples of problems coming
from the theory of topological dynamics and model nu-
merous phenomena from biology, physics, chemistry,
engineering and social sciences (see, for example, [3],
[4], [5] or [6] and references therein). In most formula-
tions of such models, f is a C∞, analytical, or a poly-
nomial map.

The dynamics of the second order polynomial (the
Logistic map Eq. (2) for µ = 1) was derived and re-
searched in [7]. Later on, more practical examples in
one-dimensional dynamical systems were deduced un-
der several real motivations, see e.g. [8], and many in-
teresting results on piecewise linear maps were reached
[9] and [10].

The theory of one-dimensional dynamical systems
was deeply researched in the past decades, see e.g. [11]
and [12]. The following classification of the periodic
structure can be considered to be the crucial result of
understanding one-dimensional dynamics [13]. Here,
the point x ∈ X is fixed if f(x) = x and is periodic
with period p if fp(x) = x and fr(x) 6= x for any
r = 1, 2, . . . p−1. Here, fn(x) = f(fn−1(x)) stands for
n fold composition of f , and denoting xn = fn(x0) the
n-th iteration of x0 under f for simplicity.

Theorem 1 (Sharkovskii, 1964). Let f be a continuous
map of the unit closed interval I with a periodic point
of the period p, and let:

p ≺ q.

Then f has a periodic point of period q.
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Fig. 1: Graphs of the Logistic Lµ (a) and Tent (b) Tµ maps for the value of parameter µ form 0.1 up to 1 by 0.1.

The ordering ≺, used in the above stated theorem, of
the set of positive integers N is defined in the following
way:

3 ≺ 5 ≺ 7 ≺ 9 ≺ . . .
≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ 2 · 9 ≺ . . .
≺ 22 · 3 ≺ 22 · 5 ≺ 22 · 7 ≺ 22 · 9 ≺ . . .
≺ 23 · 3 ≺ 23 · 5 ≺ 23 · 7 ≺ 23 · 9 ≺ . . .
≺ . . .

≺ 25 ≺ 24 ≺ 23 ≺ 22 ≺ 2 ≺ 1

That means if f : I → I has periodic point of period
3, then it has periods of all orders.

Remark 1. It is worthy to note that it is not possi-
ble to generalize the above stated theorem directly. For
example, rational rotation on the unit circle does not
hit the conclusion of Thm. 1. But some generalizations
are possible, for more, see e.g. [14].

The above stated theorem opens the way for very
rich dynamical properties, and together with sensi-
tive dependence on initial conditions [15] the feeling of
“chaos” can be reached. The first notion of chaos was
given by Li and Yorke [16] and is defined as follows.

A set S ⊂ X containing at least two points is called
an LY-scrambled set for f if for any two x 6= y in S is

lim sup
n→∞

d(fn(x), fn(y)) > 0 and

lim inf
n→∞

d(fn(x), fn(y)) = 0.

The map f is Li and Yorke chaotic if there is an un-
countable LY-scrambled set [16].

Theorem 2 (Li and Yorke, 1975). Let f be a contin-
uous map of the unit closed interval I with a periodic
point of the period 3, then f is Li and Yorke chaotic.

It was proved for interval (respectively circle) maps
that the existence of a Li–Yorke pair (scrambled set

contains only two points) implies the existence of an
uncountable scrambled set [17] (resp. [18]). In gen-
eral, Li–Yorke chaos is not implied by the presence of
a Li–Yorke pair, see [19], for instance.

Remark 2. The notion of chaos is widely studied and
many different definitions appear as well as numerous
comparative papers have been written, see e.g. [20],
[21] and [22] and references therein.

As examples of continuous maps of the unit interval
I = [0, 1] the Logistic and Tent maps are considered.
We introduce the family of Logistic maps in depen-
dence on parameter µ ∈ [0, 1]:

Lµ(x) = µ4x(1− x), (2)

and the Tent family also in dependence on parameter
µ ∈ [0, 1]:

Tµ(x) = µ(1− |2x− 1|). (3)

For the special case of parameter µ = 1, T1(x)
and L1(x) are topologically conjugated meaning that
is there is a homeomorphism h : I → I such that
h ◦ T1 = L1 ◦ h, meaning that all dynamical proper-
ties are preserved. Thus, T1(x) and L1(x) have the
same dynamical properties. This is not true for many
remaining parameters µ, see bifurcation diagram in
Fig. 2.

On the other hand, maps T1(x) and L1(x) have dif-
ferent distributions. In the case of T1(x), all orbits
are uniformly distributed as opposed to those of L1(x)
(see e.g. [23]). See Fig. 3 for comparison. In both
cases, histogram of 500 000 iterations of the initial value
x0 =

√
2/2 were done.

That opens natural questions on comparison since
from the practical point of view implementation and
iteration of Lµ is much simpler than Tµ, but the ad-
vantage of Tµ versus Lµ is that the map is piecewise
linear.

Hence, the understanding of the complexity of the
maps plays a crucial role. Therefore, the main aim of
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Fig. 2: Bifurcation diagrams: (a) for the Logistic family Lµ, (b) for the Tent family Tµ.
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Fig. 3: Histograms of L1 (a) and Tent (b) T1 maps for x0 =
√
2/2 and 500 000 iterations.

this paper is the study of dynamical properties of two
one-dimensional families, namely the Logistic Eq. (2)
and Tent Eq. (3) families. For this purpose, the topo-
logical entropy in Sec. 2. , Lyapunov exponents in
Sec. 3. , 0-1 test for chaos in Sec. 4. , and recurrence
matrices in Sec. 5. are introduced and used.

2. Topological Entropy

An attempt to measure the complexity of a dynamical
system is based on a computation of how many points
are necessary in order to approximate (in some sense)
with their all possible orbits of the system. A formal-
ization of this intuition leads to the notion of topolog-
ical entropy of the map f , which is due to Adler, Kon-
heim and McAndrew [24]. We recall here the equiv-
alent definition formulated by Bowen [25], and inde-
pendently by Dinaburg [26]: the topological entropy of
a map f is a number h(f) ∈ [0,∞] defined by:

h(f) = lim
ε→0

lim sup
n→∞

1

n
log #E(n, f, ε),

where E(n, f, ε) is a (n, f, ε)–span with minimal possi-
ble number of points, i.e., a set such that for any x ∈ X
there is y ∈ E(n, f, ε) satisfying d(f j(x), f j(y)) < ε for
1 ≤ j ≤ n.

A map f is topologically chaotic if its topological
entropy h(f) is positive. In the one-dimensional case
the theory was deeply researched in the past decades,
see e.g. [27], [28] and [29].

The topological entropy of the Tent family is well
known, see e.g. [30]:

Theorem 3 (Misiurewicz and Szlenk, 1980). Let Tµ
be the Tent family. Then

h(Tµ) =

{
0, if µ ∈ [0, 0.5]

log 2µ, if µ ∈ [0.5, 1]
.

The entropy of the Logistic family was recalculated
utilizing the above stated theorem in [31] using so
called kneading sequences, an alternative algorithms
were also given by [32].
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Fig. 4: Graph of the topological entropy versus parameter µ for the Logistic Lµ (a) and Tent Tµ (b) family. The x axis stands for
the parameter µ ∈ [0, 1], and the y axis is the topological entropy computed with logarithm base 2 in both cases, so h(Lµ)
and h(Tµ) ∈ [0, 1].

The dependence of the topological entropy of the Lo-
gistic and Tent family, respectively, is shown in Fig. 4.
In the case of the Tent family it is an increasing func-
tion, while in the case of the Logistic family it is non-
decreasing one with wide constant strips. The Tent
map is topologically chaotic if µ > 0.5, and the Logis-
tic family is topologically chaotic if µ > 0.89.

3. Lyapunov Exponent

If two infinitesimally close points of the system diverge
exponentially in time and remain in the same compact
space, it is considered that the system is chaotic, see
e.g. [33]. The measure of this divergence is called Lya-
punov exponent. The positive value of the Maximal
Lyapunov exponent indicates the system is chaotic, for
zero case the bifurcation occurs and a negative Lya-
punov exponent detects regular (periodic) movement.

Now, let us consider a point x0 and its neighboring
point x0 + δ, assuming δ to be positive real number.
The error errn we did replacing the original point by
its neighbor in the n-th iteration defined by:

errn = |fn(x0 + δ)− fn(x0)|,

and the relative error by:

∣∣∣errn
δ

∣∣∣ =
|fn(x0 + δ)− fn(x0)|

δ
.

If the map f has sensitive dependence on initial con-
ditions (see [2]) meaning that there is ε such that for
any x0 ∈ I there is y0 ∈ (x0− δ, x0 +δ) and k ∈ N such
that:

|fk(x0)− fk(y0)| ≥ ε,

we suppose the relative error to grow exponentially
with n and thus:

enλ = lim
δ→0

|fn(x0 + δ)− fn(x0)|
δ

=

∣∣∣∣ d

dx
fn(x0)

∣∣∣∣
= |f ′(x0)f ′(x1) . . . f ′(xn−1)|.

Hence

λ = lim
n→∞

1

n

n−1∑
k=0

ln |f ′(xk)|,

defines the Lyapunov exponent of a map f with re-
spect to the initial point x0, if the limit exists, denoted
Lyap(f(x0)).

Lyapunov exponent for the Logistic family can be
computed as:

Lyap(Lµ(x0)) = lim
n→∞

1

n

n−1∑
k=0

log |4µ− 8µfk(x0)|. (4)

In the case of the Tent family Maximum Lyapunov
exponent equals to:

Lyap(Tµ(x0)) = lim
n→∞

1

n

n−1∑
k=0

log |2µ| = log 2µ. (5)

Lyapunov exponents for the Logistic and Tent families
are shown in Fig. 5, in both cases x0 =

√
2/2.

Inverse of the Maximal Lyapunov exponent is a num-
ber of steps which may be predicted in the system.
Thus, Maximal Lyapunov exponent is directly related
to predictability of the system and is of great interest
in study of dynamical systems. In practice, Maximal
Lyapunov exponent must be estimated from the exper-
imental data. The generally used method is proposed
in [34] and was used, for example, in [35] to estimate
predictability of highway traffic speed in England.
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Fig. 5: Graph of the Lyapunov exponent versus parameter µ for the Logistic Lµ (a) and Tent Tµ (b) family. The x axis stands
for the parameter µ ∈ [0, 1], and the y axis is the topological entropy computed with logarithm base 2 in both cases, so
Lyap(Lµ) and Lyap(Tµ) ∈ [0, 1].

4. 0-1 Test for Chaos

The 0-1 test for chaos was introduced in [36] to distin-
guish between regular and chaotic dynamics in deter-
ministic dynamical systems. As an output of the test, 0
stands for regular movement and 1 for chaotic patterns.
As opposed to the computational methods of the Lya-
punov exponent, this method is direct on tested data,
i.e. no preprocessing and only minimal computational
effort is required. This method was originally stated as
regression one, and later on in [37] it was improved as
correlation that is faster and qualitatively gives better
results; it is faster in terms of convergence. This cor-
relation method works for a given set of observations
φ(j) for j ∈ {1, 2, , 3, . . . N} as follows.

Firstly, compute the translation variables for suit-
able choice of c ∈ (0, 2π):

pc(n) =

N∑
j=1

φ(j) cos(jc), qc(n) =

N∑
j=1

φ(j) sin(jc),

then the mean square displacement:

Mc(n) = lim
N→∞

1

N

N∑
j=1

(
[pc(j + n)− pc(j)]2

+[qc(j + n)− qc(j)]2
)
,

where the limit is confident by calculating Mc(n) only
for n ≤ ncut where ncut � N , and put ncut = N/10.
Now, let us estimate modified mean square displace-
ment:

Dc(n) = Mc(n)−

 lim
N→∞

1

N

N∑
j=1

φ(j)

2

1− cos(nc)

1− cos(c)
.

Put ξ = (1, 2, . . . ncut), ∆ =
(Dc(1), Dc(2), . . . Dc(ncut)). Finally, we get the
output of the 0-1 test as the correlation coefficient of
ξ and ∆ for fixed parameter c:

Kc = corr(ξ,∆) ∈ [−1, 1]. (6)

Obviously, Kc is dependent on the choice of c and as
it was pointed out in [37] it is enough to get K, as the
output of the 0-1 test, as the limiting value of all Kc.
Our tests confirm experience of [37] that it is sufficient
to introduce K = median (Kc).

To avoid the resonances distorting the statistics,
parameter c is chosen from the restricted interval
(π/5, 4π/5) for all computations, see [37]. In our tests
450 samples from 0.55 to 1.0 by 0.01 for the Tent fam-
ily and 150 samples from 0.85 to 1.0 by 0.01 for the
Logistic family were done. In both cases 500 000 iter-
ations of initial value x0 =

√
2/2 were performed. The

output of computations is shown in Fig. 6.

5. Recurrence Plot

Recurrence plot is a visual representation of trajectory
recurrences in the dynamical system. Extensive publi-
cation concerning theory of recurrence plots and appli-
cation of recurrence plots in time series analysis are [38]
and [39], respectively. Generally, it is computed from
the embedded time series. Embedding time series to
the phase space is common practice in the nonlinear
dynamical systems analysis. In the case of observing
one feature of the multi-dimensional dynamical system,
embedding of this observed time series should re-create
phase space with same dynamics as the original system
see e.g. [40].
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Fig. 6: Graph of the 0-1 test for chaos versus parameter µ for the Logistic Lµ (a) and Tent Tµ (b) family.

Let {x(t) ∈ R| t = 1, 2, . . . , n} be observed time se-
ries of length n. Then embedded vector X(t) at time
t, is defined as X(t) = [x(t), x(t+ l), x(t+2l), . . . , x(t+
(m− 1)l)], where t is the observed time, l is delay time
and m is embedding dimension.

First, the distance matrix of all the vectors X(t) is
computed. The euclidean distance matrix is computed
as:

D(t1, t2) = d(X(t1), X(t2)) = (7)

=

√√√√m−1∑
k=0

(x(t1 + kl) + x(t2 + kl))2,

for all the pairs X(t1), X(t2), where t1, t2 ∈
{1, 2, . . . , n− (m− 1)l}. Recurrence plot is then com-

puted as

RP ε(i, j) =

{
1, D(i, j) < ε,

0, otherwise,
(8)

for i, j ∈ {1, 2, . . . , n− (m− 1)l}. This may be alterna-
tively written as RP ε(i, j) = Θ(D(i, j)), where Θ(·) is
the Heaviside function.

A recurrence plots for different values of parameter
µ for the Logistic family and Tent family are shown
in Fig. 7 and Fig. 8 respectively. The difference in dy-
namics is clear between the recurrence plots for Logistic
map with parameter µ = 0.91 and parameter µ = 1.
While there are many structures with large number of
smaller blocks changing almost regularly in the first
case. These structures are more complicated for the
latter case, where the block size is more diverse and is
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Fig. 7: Recurrence plot for the Logistic family for parameter µ = 0.91 (a) and µ = 1 (b).

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 309



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 15 | NUMBER: 2 | 2017 | JUNE

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

Fig. 8: Recurrence plot for the Tent family for parameter µ = 0.65 (a) and µ = 1 (b).

changing in very irregular pattern. Similar behavior is
present for the Tent family, where the blocks are even
smaller in case of µ = 0.65 and the dynamics variability
is comparable to the Logistic family for µ = 1.

6. Conclusions

In this paper, the Logistic and Tent families were in-
troduced newly with the same parameter µ ∈ [0, 1]
for better comparison of dynamical properties for the
same fixed value of µ. For this purpose, bifurcation
diagrams (Fig. 2), topological entropies (Fig. 4), Lya-
punov exponents (Fig. 5), 0-1 test for chaos (Fig. 6),
and recurrence matrices (Fig. 7 and Fig. 8) were com-
puted and utilized.

As it is visible from Fig. 2(a), Fig. 4(a) and Fig. 5(a)
for the value of parameters µ ∈ [0, 0.89), there is no
chaotic behavior of the Logistic family, for this value
of parameter all orbits behave like periodic or almost
periodic. The crucial value µ = 0.8924, also referred to
as Feigenbaum constant, enters the region of parame-
ters (0.89, 1] for which rich irregular behavior appears.
For this value of parameter chaos was detected, see
Fig. 6(a). In this Fig. 6(a) the 0-1 test for chaos is
also detecting “windows” visible in the bifurcation dia-
gram Fig. 2(a), that corresponds to the constant pieces
of the topological entropy observable in Fig. 4(a). The
Feigenbaum constant can be effectively computed using
the Newton method, see e.g. [41]. On the other hand,
in Fig. 2(b), Fig. 4(b) and Fig. 5(b) for the value of pa-
rameters µ ∈ [0, 5) it is shown that periodic movement
appears in the Tent family, the value µ = 0.5 plays
a key role of bifurcation border that opens a region of
parameters µ ∈ [0.5, 1] for which chaotic patterns are
recognized, see Fig. 6(b).

As it was shown and commented, T1 and L1 are topo-
logically conjugated, i.e. they have the same dynamical
properties. On the other hand, they have dramatically
different distributions (Fig. 3) that yield computational
difficulties.

Methods like topological entropy and Lyapunov ex-
ponent for detecting chaotic movements are very hard
to apply for real problems since they have slow con-
vergency property. Therefore, the 0-1 test for chaos
(Fig. 6) and recurrence matrices (Fig. 7 and Fig. 8)
were chosen as alternative techniques for chaos detec-
tion.
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