
DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

Analysis on the AES Implementation with Various
Granularities on Different GPU Architectures

Ahmed Awadalla ABDELRAHMAN 1, Mohamed Mahmoud FOUAD 1,
Hisham Mohamed DAHSHAN 2

1 Department of Computer Engineering, Military Technical College,
Al-Khalifa Al-Maamoon Street Kobry Elkobbah, Cairo, Egypt
2Department of Communications, Military Technical College,
Al-Khalifa Al-Maamoon Street Kobry Elkobbah, Cairo, Egypt

ahmedsoliman@mtc.edu.eg, mmafoad@mtc.edu.eg, hdahshan@mtc.edu.eg

DOI: 10.15598/aeee.v15i3.2324

Abstract. The Advanced Encryption Standard (AES)
is One of the most popular symmetric block cipher be-
cause it has better efficiency and security. The AES is
computation intensive algorithm especially for massive
transactions. The Graphics Processing Unit (GPU) is
an amazing platform for accelerating AES. it has good
parallel processing power. Traditional approaches for
implementing AES using GPU use 16 byte per thread
as a default granularity. In this paper, the AES-128 al-
gorithm (ECB mode) is implemented on three different
GPU architectures with different values of granulari-
ties (32,64 and 128 bytes/thread). Our results show
that the throughput factor reaches 277 Gbps, 201 Gbps
and 78 Gbps using the NVIDIA GTX 1080 (Pascal),
the NVIDIA GTX TITAN X (Maxwell) and the GTX
780 (Kepler) GPU architectures.

Keywords

AES, compute unified device architecture
(CUDA), GPU, granularity.

1. Introduction

Nowadays, The demand for constructing fast and se-
cure communication networks is very important. As
the size of data sets increases, the speed of encryption
process also increases. One of the most widely used
block ciphers is the AES [1] that consists of many in-
tensive computations [2], [3], [4] and [5]. Usch compu-
tations can be performed on GPUs which are originally
developed to deal with accelerating graphical and video
applications. GPUs are also designed to deal with non-

graphical computations (i.e., General-Purpose Graph-
ics Processing Unit (GPGPU)).

In this paper, we implement the AES algorithm
using GPU taking into consideration different gran-
ularity values of 32, 64, and 128 Bytes/thread seek-
ing to increase the AES performance (i.e., through-
put). The implementations of the AES are performed
on three different GPU architectures: Kepler (Nvidia
GTX 780), Maxwell (Nvidia GTX TITAN X), and Pas-
cal (Nvidia GTX 1080) using various input block sizes
with random plain text.

K
ey

 e
xp

an
si

on

Pre-round
transformation

Round 1

Round 2

Round N
(slightly different)

r

K0

K1

K2

KR

Round keys
(128 bits)

R Key size

10

12

14

128

192

256

Cipher key
(128, 192 or 256 bits)

Relationship betwen
number of rounds (R)
and cipher key size

128-bit plaintext

128-bit ciphertext

Fig. 1: The overall structure of the AES algorithm [1].

2. The AES Algorithm
Mechanism

In this section, the overall structure of the AES en-
cryption algorithm is overviewed with three cipher im-

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 526

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

plementations: AES-128, AES-192, and AES-256 as
shown in Fig. 1. All of those implementations use
a 128-bit block input, however, with a key size of 128
bits, 192 bits, and 256 bits, respectively. The AES en-
cryption algorithm consists of 10 rounds using the 128-
bit key, 12 rounds using the 192-bit key, and 14 rounds
using the 256-bit key. Each of these rounds uses a dif-
ferent 128-bit round key, which is evaluated from the
original AES key using the key expansion technique.
The AES algorithm basically consists of two steps: key
expansion and round transformations [1], as presented
in Subsec. 2.1. and Subsec. 2.2. , respectively.

2.1. Key Expansion Step

The AES key expansion step is used to expand the
cipher key from 128, 192, or 256 bits to 1280 bits
(10 round-keys), 1472 bits (12 round-keys) or 1664 bits
(14 round-keys), respectively. The round keys are used
in the AddRoundKey transformation [1]. It consists of
three tasks:

• Substitute Word (SubWord): takes a 32-bit
word a four-Byte as input and makes a substitu-
tion based on the S-Box for each of the four Bytes
to produce an output word.

• Rotate Word (RotWord): takes a 32-bit word
and makes one cyclic left rotation to produce an
output word.

• Round constant (Rcon): XOR 32-bit word
with the round constant (Rcon).

2.2. Round Transformations Step

The input plain text data are divided into 16-Byte
Blocks arranged in a 4×4 column-majored array called
state. The AES algorithm has four different kinds of
layers.

• Add round key layer: is a bitwise XOR oper-
ation between each column in the state and the
corresponding round key from the key expansion.

• Bytes substitution layer (using S-box): is a
non-linear substitution, where each Byte in the
state is independently substituted according to a
given substitution table (i.e., S-Box). The first
four bits of the Byte are used to index the S-Box
rows, while the second four bits are used to index
the S-Box columns.

• ShiftRows layer: rotates the last three rows in
the state to the left. The result is a new matrix
consisting of the same 16 Bytes, but shifted with
respect to each other.

• MixColumns layer: operates on each column in
the state by using Galois Field (GF) math. This
is done by treating every column as a four-term
polynomial over GF (2 · 8). The result is a new
matrix consisting of new 16 Bytes.

2.3. AES Modes of Operation

In Tab. 1, six modes of the AES encryption algo-
rithm are presented providing different levels of secu-
rity and parallelism Electronic Code Book (ECB), Ci-
pher Block Chaining (CBC), Cipher Feedback (CFB),
Output Feedback (OFB), Counter (CTR), and XEX-
based tweaked-codebook mode with ciphertext stealing
(XTS) [1]. In this paper, we implemented a CUDA-
based AES algorithm using the ECB mode as it could
be implemented in a parallel manner. Given the ECB
mode, the message is divided into blocks, then each
block can be encrypted separately.

Tab. 1: AES Modes of operation [6].

Mode Description Parallelization
potential

Electronic
Codebook
(ECB)

For a given key, the forward cipher
function is applied directly and
independently to each block of the
plaintext.

Suitablefor
parallelization

Cipher
Block

Chaining
(CBC)

Each successive plaintext block is
exclusive-ORed with the previous
output/ciphertext block to produce the
new input block. The forward cipher
function is applied to each input block
to produce the ciphertext block.

Decryption is
suitable for

parallelization

Cipher
Feedback
(CFB)

The feedback of successive ciphertext
segments is input to the forward
cipher blocks to generate output
blocks that are exclusive-ORed with
the plaintext to produce a new ciphertext
and vice versa.

Not suitable for
parallelization

Output
Feedback
(OFB)

The iteration of the forward cipher on
an IV to generate a sequence of output
blocks that are exclusive-ORed with
the plaintext to produce the ciphertext,
and vice versa.

Not suitable for
parallelization

Counter
(CTR)

The application of the forward cipher
to a set of input blocks, called
counters, to produce a sequence of
output blocks that are exclusive-ORed
with the plaintext to produce the
ciphertext, and vice versa.

Suitable for
parallelization

XEX-based
tweaked-codebook

mode with
ciphertext stealing

(XTS)

IEEE standard, IEEE Std 1619-2007,
which a method of encryption for data
stored in sector-based devices

Suitable for
parallelization

2.4. The Fast AES Implementation
Algorithm

In the fast AES algorithm, the lookup table solution [7]
and [8] could be replaced with four versions of the AES
round transformation step. In this fast algorithm, the
four lookup tables are defined as: T0, T1, T2, and T3.
Each table accepts one Byte of input, and comes out
with a 32-bit column vector. The operations of each

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 527

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

round transformation can be defined as follows:

ej = T0[a0,j]⊕ T1[a0,j]⊕ T2[a0,j]⊕ T3[a0,j]⊕Kj , (1)

where a0,j represents the round input, Kj is one col-
umn of the stage key, and ej denotes one column of
the round output in terms of Bytes of a0,j . T0, T1, T2,
and T3 refer to the lookup tables which have 256 of
32-bit word entries each. Each table needs 1 KBytes
of storage space.

3. Implementation Techniques
on GPU Platform

This section presents the traditional implementations
of the AES algorithm on GPU platforms. The GPU-
based implementations of the AES algorithm can be
divided into three major categories: memory optimiza-
tion, parallel granularity, and GPU platform specific
optimization [9], [10] and [11].

3.1. Memory Optimization

In this subsection, we will deal with two parameters:
(Lookup Tables) lookup tables and (Encryption Keys
Storage) Encryption keys storage.

• Lookup Tables: need 4 KB of storage space. The
best choice is to store (T-box) in the shared mem-
ory as it has high access speed. It is allocated
per thread block, so all threads in the block have
access to the same shared memory [9].

• Encryption Keys Storage: The AES perfor-
mance can be also further enhanced if the encryp-
tion keys are first computed inside the CPU. Then,
those keys are stored in the GPU global memory.
When the GPU kernel is launched, each thread in
a warp copies key value(s) from the global mem-
ory and stores it in two registers. This process is
known as warp shuffle [9]. There are 32 threads in
a warp, so only 64 keys can be hold in total. Using
this strategy, all encryption keys can be saved in
registers with higher access speed.

3.2. Parallel Granularity

In the parallel processing concept, many threads can
be assigned to perform one process for speeding up the
functionality, thus reducing the execution time. In the
AES algorithm, the default number of blocks needed
to be encrypted (i.e., granularity) per one thread is
one block (i.e., 16 Bytes) as shown in Tab. 3 [9],
[12], [13], [14], [15], [16] and [17]. Having the paral-
lel processing concept been embedded into the AES

algorithm, the number of data blocks encrypted us-
ing one thread can be further increased to 2, 4, or
8 blocks. This is called parallel granularity of the
AES algorithm. In this paper, we examine new par-
allel granularities that have never been used in the
literature, such as 32 Bytes/thread (i.e., two data
blocks), 64 Bytes/thread (i.e., four data blocks), and
128 Bytes/thread (i.e., eight data blocks).

3.3. GPU Platform Specific
Optimization

Each new GPU architecture has its own hardware spec-
ifications that are different in design from previous ar-
chitectures in order to enhance the overall performance.
The GPU occupancy is a measure of thread parallelism
in a CUDA program. The higher the occupancy, the
higher the performance (i.e., throughput). The field
thread block size affects the GPU occupancy that de-
pends on the GPU architecture. For example, given
the Maxwell GPU SM 5.2, the thread block size that
satisfies 100 % occupancy is set to 128, 256, 512, and
1024 as shown in Tab. 2. However, in this paper, the
thread block size is set to 128 threads per block.

Tab. 2: Occupancy in GPU SM 5.2 [9].

Thread Block
Size (TBS)

Total blocks
(2048/TBS)

Occupancy
(active blocks/
total blocks)·100

64 32 75 %
128 16 100 %
256 8 100 %
512 4 100 %
1024 2 100 %

4. Related Work

There are several researches showing implementing the
AES algorithm using the GPU architectures as men-
tioned above with CUDA language. Table 3 sum-
marizes recent implementations of CUDA-based AES-
128 ECB on GPU. Mei et al. in [12] proposed an
efficient approach to parallelize AES and fine-tune
the memory utilization in GeForce 9200M GS. Their
best performance is 51.2 Gbps throughput rate using
16 Bytes/thread granularity.

N. Nishikawa et al. in [14] implemented AES
on CUDA and studied the following computation
granularities: 16 Bytes/thread, 8 Bytes/thread,
4 Byte/thread and 1 Byte/thread. Their best
performance is 35.2 Gbps throughput rate using
16 Bytes/thread granularity. Zola et al. [16] proposed
a speculative AES-CTR scheme. The proposed scheme

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 528

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

Tab. 3: Summary of AES implementations on different GPU architectures.

References AES
(Gbps) Mode GPU device Architecture Round keys storage Parallel

granularity Year

Mei et al. [12] 51.2 Unknown GS9200M Tesla Shared memory Unknown 2010
Bos et al. [18] 59.6 Unknown GTX295 Tesla Shared memory Unknown 2010
Zola et al. [16] 72.0 CTR GTX260 Tesla Shared memory 16B/thread 2012

Nishikawa et al. [19] 48.6 ECB Tesla C2050 Fermi Shared memory 16B/thread 2012
Li et al. [13] 60.0 ECB Tesla C2050 Fermi Shared memory 16B/thread 2012

Nishikawa et al. [15] 68.6 ECB GTX680 Kepler Shared memory 16B/thread 2014
Lee et al. [9] 149.5 CTR GTX980 Maxwell warp shuffle approach 16B/thread 2016

Tab. 4: 32, 64 and 128 granularities effect compared with 16 granularity.

Granularities Explaination Total number
of threads run

Processing
functionality
per thread

16 Bytes/thread One thread will encrypt
one AES block x y

32 Bytes/thread One thread will encrypt
two AES blocks x / 2 y * 2

64 Bytes/thread One thread will encrypt
four AES blocks x / 4 y * 4

128 Bytes/thread One thread will encrypt
eight AES blocks x / 8 y * 8

encrypts the counter blocks processes in GPU plus
CPU with throughput of 72.0 Gbps.

Li et al. in [13] stored T-boxes on on-chip shared
memory. Moreover, the granularity where one thread
handles a 16 Bytes AES block was adopted, yielding
throughput of 60 Gbps on NVIDIA Tesla C2050 GPU.
Nishikawa et al. in [15] presented implementation of
block ciphers in NVIDIA and AMD GPU based on
Geforce GTX 680 architecture with throughput of 68.6
Gbps.

Wai-Kong Lee et al. in [9] presented implementation
of AES in NVIDIA GTX 980 with Maxwell architec-
ture and utilized the advanced features warp shuffle
approach to further accelerate the performance. Al-
though, all aforementioned approaches have used dif-
ferent GPU architectures to speedup the execution
time, the granularity is still limited to 16 Bytes/thread
(i.e., one block per thread). In this paper, we examine
all available granularities on various GPU architectures
to achieve the optimized settings for each architecture.

5. Proposed AES Algorithm

We implemented the AES algorithm with two tech-
niques of optimization as mentioned in Sec. 3. The
proposed parallel granularities used and the encrypted
key storage are explained in Subsec. 5.1. and Subsec.
5.2. , respectively.

5.1. Parallel Granularity

There is a trade-off between the number of data blocks
needed to encrypted by one thread (i.e., parallel granu-
larity), and the processing functionality of each thread
that negatively affects the AES performance accord-
ing to the specifications of the GPU used. We propose
larger granularities (32, 64, and 128 Bytes/thread) in
order to encrypt more than one data block instead of
only one as shown in Tab. 4 compared to conventional
granularity of 16 Bytes/thread.

5.2. Encrypted Keys Storage

We used three different techniques for storing the AES
encryption keys inside GPU in order to show its effects
using different parallel granularities.

• Shared memory storage: the encryption keys are
stored in the shared memory inside the GPU.

• Warp shuffle storage: the encryption keys are
stored in the CPU registers and can be accessed
using the warp shuffle feature.

• Global memory storage: the encryption keys are
stored in the global memory inside the GPU.

6. Implementation Setup and
Performance Evaluation

• GPU platforms: We use three different plat-
forms supporting three different GPU architec-

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 529

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

tures (Kepler, Maxwell, and Pascal) as shown in
Tab. 5.

• Implementation: All AES implementations,
used in our experiments, are performed using the
CUDA Toolkit 7.5 on Linux (i.e., Ubuntu 14.04).
The proposed approach is performed on the Pascal
GPU (i.e., NVIDIA GTX 1080).

• Competing approaches: For fair comparison,
the proposed approach is compared to the ap-
proach shown by Nishikawa et al. [15], on
the Kepler GPU (i.e., NVIDIA GTX 780), and
that shown by Lee [9] on the Maxwell GPU
(i.e., NVIDIA GTX TITAN X).

• Parallel granularity values: The granularity is
set to different values (i.e., 16, 32, 64, and 128)
in all competing approaches using three different
GPU architectures as shown in Tab. 5 for a thor-
ough analysis.

• Performance evaluation: the performance of
all competing approaches is evaluated by the
throughput metric, in Giga bits per second
(Gbps), on the basis of the higher the better.

Tab. 5: Configuration of the three GPU platforms.

Platform GPU CPU

1
NVIDIA GTX 780
CUDA Cores =2880
Architecture: Kepler

Intel Xeon E5-2640
v2 Total: 8 Cores

2
NVIDIA GTX TITAN
X CUDA Cores =3072
Architecture: Maxwell

Intel Xeon E5-2640
v2 Total: 8 Cores

3
NVIDIA GTX 1080
CUDA Cores =2560
Architecture: Pascal

Intel Xeon E5-2640
v2 Total: 8 Cores

7. Experiments and Results

In our experiments, we focus on computing the kernel
time in the GPU that exempts the data transfer time
between both CPU and GPU. We repeated the same
experiment with a specific setting on a particular GPU
for 30 times and took the average throughput. Four
different charts are presented to show our results for a
specific GPU architecture. In all charts, as mentioned
in Tab. 6, we used different granularities with a specific
encryption keys storage.

7.1. Experimental Results on Kepler
Platform

We evaluated the average throughput for different in-
put block sizes (16 MBytes to 512 MBytes) as follows:

Tab. 6: Four different charts depending on two techniques of
optimization.

Chart Explanation

Shared memory-based Encryption keys are stored
in shared memory

Warp shuffle Encryption keys are stored
using Warp shuffle

Global memory-based Encryption keys are stored
in Global memory

All-in-one
Combine previous charts
in one chart to conclude
the best throghput

• Shared memory-based chart, in Fig. 2(a),
shows that the default granularity (i.e.,
16 Bytes/thread) provides a higher average
throughput compared to other granularities.

• Warp Shuffle chart, in Fig. 2(b), shows that the de-
fault granularity (i.e., 16 Bytes/thread) provides
a higher average throughput compared to other
granularities.

• Global memory-based chart, in Fig. 2(c),
shows that the parallel granularity (i.e.,
32 Bytes/thread) provides a higher average
throughput compared to other granularities.

• All-in-one chart, in Fig. 3, shows that the de-
fault granularity (i.e., 16 Bytes/thread) with the
shared memory key storage provides a higher av-
erage throughput of 78 Gbps.

7.2. Comparison Between
GPU-Based and CPU-Based
Implementations

7.3. Experimental Results on
Maxwell Platform

We evaluated the average throughput for different in-
put block sizes (16 MBytes to 512 MBytes) as follows:

• Shared memory-based chart, in Fig. 4(a),
shows that the parallel granularity (i.e.,
32 Bytes/thread) provides a higher average
throughput compared to other granularities.

• Warp Shuffle chart, in Fig. 4(b), shows shows that
the parallel granularity (i.e., 32 Bytes/thread) pro-
vides a higher average throughput compared to
other granularities.

• Global memory-based chart, in Fig. 4(c),
shows that the parallel granularity (i.e.,
64 Bytes/thread) provides a higher average
throughput compared to other granularities at
most input file sizes. However, in case of setting

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 530

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

16M 32M 64M 128M 256M 512M

40

50

60

70

80

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

16M 32M 64M 128M 256M 512M

40

45

50

55

60

65

70

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

16M 32M 64M 128M 256M 512M

40

45

50

55

60

65

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

(a) (b) (c)

Fig. 2: (a), (b) and (c) are the shared memory-based, warp shuffle-based, and global memory-based charts, respectively, using the
NVIDIA GTX 780 (Kepler GPU).

16M 32M 64M 128M 256M 512M

35

40

45

50

55

60

65

70

75

80

Data Size (MBytes)

Th
ro
ug

hp
ut

(G
bp

s)

shared 16Bytes/Thread warpshuffle 16Bytes/Thread global 16Bytes/Thread
shared 32Bytes/Thread warpshuffle 32Bytes/Thread global 32Bytes/Thread
shared 64Bytes/Thread warpshuffle 64Bytes/Thread global 64Bytes/Thread
shared 128Bytes/Thread warpshuffle 128Bytes/Thread global 128Bytes/Thread

Fig. 3: All-in-one approach for NVIDIA GTX 780 (Kepler).

16M 32M 64M 128M 256M 512M

100

120

140

160

180

200

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

16M 32M 64M 128M 256M 512M
80

100

120

140

160

180

200

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

16M 32M 64M 128M 256M 512M

60

80

100

120

140

160

180

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

(a) (b) (c)

Fig. 4: (a), (b) and (c) are the shared memory-based, warp shuffle-based, and global memory-based charts, respectively, using the
NVIDIA GTX TITAN X (Maxwell GPU).

the input file size to 512M, the new parallel
granularity (i.e., 128 Bytes/thread) provides a
higher average throughput.

• All-in-one chart, in Fig. 5, shows that the par-
allel granularity (i.e., 32 Bytes/thread) with the
shared memory key storage provides a higher av-
erage throughput of 201 Gbps. However, in case
of setting the input file size to 256M, the parallel
granularity (i.e., 32 Bytes/thread) with the warp
shuffle memory storage provides a higher average
throughput.

7.4. Experimental Results on Pascal
Platform

We evaluated the average throughput for different in-
put block sizes (16 MBytes to 512 MBytes) as follows:

• Shared memory-based chart, in Fig. 6(a),
shows that the parallel granularity (i.e.,
32 Bytes/thread) provides a higher average
throughput compared to other granularities.

• Warp shuffle chart, in Fig. 6(b), shows that the
parallel granularity (i.e., 32 Bytes/thread) pro-

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 531

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

16M 32M 64M 128M 256M 512M

60

80

100

120

140

160

180

200

Data Size (MBytes)

Th
ro
ug

hp
ut

(G
bp

s)

shared 16Bytes/Thread warpshuffle 16Bytes/Thread global 16Bytes/Thread
shared 32Bytes/Thread warpshuffle 32Bytes/Thread global 32Bytes/Thread
shared 64Bytes/Thread warpshuffle 64Bytes/Thread global 64Bytes/Thread
shared 128Bytes/Thread warpshuffle 128Bytes/Thread global 128Bytes/Thread

Fig. 5: All-in-one chart for NVIDIA GTX TITAN X (Maxwell).

16M 32M 64M 128M 256M 512M

100

150

200

250

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

16M 32M 64M 128M 256M 512M

100

150

200

250

Data Size (MBytes)

T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

16M 32M 64M 128M 256M 512M
50

100

150

200

250

Data Size (MBytes)
T
hr
ou

gh
pu

t
(G

bp
s)

16Bytes/Thread

32Bytes/Thread

64Bytes/Thread

128Bytes/Thread

(a) (b) (c)

Fig. 6: (a), (b) and (c) are the shared memory-based, warp shuffle-based, and global memory-based charts, respectively, using the
NVIDIA GTX 1080 (Pascal GPU).

16M 32M 64M 128M 256M 512M

60

80

100

120

140

160

180

200

220

240

260

280

Data Size (MBytes)

Th
ro
ug

hp
ut

(G
bp

s)

shared 16Bytes/Thread warpshuffle 16Bytes/Thread global 16Bytes/Thread
shared 32Bytes/Thread warpshuffle 32Bytes/Thread global 32Bytes/Thread
shared 64Bytes/Thread warpshuffle 64Bytes/Thread global 64Bytes/Thread
shared 128Bytes/Thread warpshuffle 128Bytes/Thread global 128Bytes/Thread

Fig. 7: All-in-one chart for NVIDIA GTX 1080 (pascal).

vides a higher average throughput compared to
other granularities.

• Global memory-based chart, in Fig. 6(c),
shows that the parallel granularity (i.e.,
64 Bytes/thread) provides a higher average
throughput compared to other granularities.

• All-in-one chart, in Fig. 7, shows that the par-
allel granularity (i.e., 32 Bytes/thread) with the

shared memory key storage provides a higher av-
erage throughput of 276 Gbps.

The speedup-factor of using the GPU architecture
over the CPU is needed to be determined. In case of
using the CPU, the AES algorithm is implemented on
an 8-core dual processor. In case of using the GPU,
three different GPU architectures are exploited. The
speedup-factor is determined as 40 on the Kepler GPU,
100 on the Maxwell GPU, and 130 on the Pascal GPU

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 532

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

at a specific input file size. Note that the speedup-
factor increases as the input block size increases. Ta-
ble 7 shows the speedup-factor obtained on the three
different GPU architectures over the CPU implemen-
tation with different input file sizes.

Tab. 7: Speedup-factor for implementing the AES algorithm on
the Kepler, Maxwell, and Pascal GPUs compared to
that on the CPU.

Input size
Speed up factor =

CPU time / GPU time

GTX 780
(Kepler)

GTX TITAN
X

(Maxwell)

GTX 1080
(Pascal)

1 M 20.200 60.590 60.600
2 M 26.989 72.776 87.570
4 M 29.862 73.898 88.705
8 M 28.994 78.488 97.984
16 M 29.796 79.291 99.055
32 M 29.792 79.988 99.955
64 M 30.987 81.510 107.040
128 M 31.824 81.599 109.540
256 M 33.885 96.124 129.843
512 M 37.456 98.517 130.992

8. Analysis and Discussion

We presented four parallel AES charts using the par-
allel granularity and round keys storage to achieve a
higher performance (i.e., throughput). In this section,
we can analyze our experimental results mentioned
above.

8.1. Parallel Granularity

The new 32, 64, and 128 granularities affect the AES
performance depending on the GPU architecture used
as follows:

1) The Kepler GPU

• The default granularity(i.e., 16 Bytes/thread) pro-
vides a higher throughput of the AES algorithm
compared to other granularities with the shared
memory-based, warp shuffle-based, and All-in-one
charts.

• The 32 Bytes/thread granularity outperforms
other granularities with the global memory-based
storage. Nevertheless, it didn’t achieve as good
results for the AES. It can be a good alternative
in optimizing another algorithm using the Kepler
GPU.

2) Maxwell and Pascal GPUs

• The 32 Bytes/thread granularity provides a higher
throughput of the AES algorithm compared to
the default granularity (i.e., 16 Bytes/thread) with
the shared memory-based, warp shuffle-based, and
All-in-one charts.

• The 64 Bytes/thread granularity outperforms
other granularities with the global memory-based
storage. Nevertheless, it didn’t achieve as good re-
sults for the AES. It can be also a good alternative
in optimizing another algorithm.

As aforementioned in Sec. 5. , there is a trade-off
between the number of data blocks to be encrypted by
one thread, and the processing functionality of each
thread according to the specifications of the GPU
used. In recent GPU architectures, such as Maxwell
and Pascal, both the number of Streaming Multipro-
cessors (SMs), and the number of active blocks per
multiprocessors are largely increased compared to
those of the Kepler GPU. In turn, reducing the number
of threads by using higher granularities overcomes the
issue of increasing the processing functionality of each
thread, thus increasing the AES performance.

8.2. Round Keys Storage

Although the registers are faster than the shared
memory inside the GPU, using the latter provides a
higher AES throughput compared to the warp shuffle-
based storage in all GPU platforms used (i.e., Kepler,
Maxwell, and Pascal). This is because storing the
round keys in two registers as well as accessing them us-
ing 32 threads inside a warp results in higher race con-
ditions that negatively impact the AES performance.

9. Conclusions

We implemented the AES with CUDA language con-
sidering the parallel granularity with different round
keys storage techniques to eventually increase the AES
performance (i.e., throughput). The AES-128 is imple-
mented with different parallel granularities on different
GPU architectures compared to the CPU implementa-
tion. The proposed approach achieves throughput of
277 Gbps, 201 Gbps, and 78 Gbps on the Pascal GPU,
the Maxwell GPU, and the Kepler GPU with granular-
ity values of 32, 32, and 16 Bytes/thread, respectively.
In addition, the speedup factor of implementing the
AES algorithm using those GPUs are 130.992, 98.517,
and 37.456, respectively, at 512 MBytes input file size
with the best granularity value mentioned shortly.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 533

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

References

[1] Federal Information Processing Standards Pub-
lication 180-2. Secure Hash Standard. Geneva:
National Institute of Standards and Technology,
2002.

[2] HARRISON, O. and J. WALDRON. AES encryp-
tion implementation and analysis on commod-
ity graphics processing units. In: International
Workshop on Cryptographic Hardware and Embed-
ded Systems. Berlin: Springer, 2007, pp. 209–226.
ISBN 978-3-540-74735-2. DOI: 10.1007/978-3-540-
74735-2.

[3] CHU, X., K. ZHAO and M. WANG. Mas-
sively parallel network coding on GPUs.
In: Performance, Computing and Com-
munications Conference. Austin: IEEE,
2008, pp. 144–151. ISBN 978-1-4244-3368-1.
DOI: 10.1109/PCCC.2008.4745113.

[4] MANAVSKI, S. A. CUDA compatible GPU
as an efficient hardware accelerator for AES
Cryptography. In: IEEE International Confer-
ence on Signal Processing and Communications.
Dubai: IEEE, 2007, pp. 65–68. ISBN 978-1-4244-
1235-8. DOI: 10.1109/ICSPC.2007.4728256.

[5] HARRISON, O. and J. WALDRON. Practical
symmetric key cryptography on modern graphics
hardware. In: Proceedings of the 17th conference
on Security symposium. San Jose: USENIX Asso-
ciation Berkeley, 2008, pp. 195–209. ISBN 978-1-
931971-03-4.

[6] LI, Q., C. ZHONG, K. ZHAO, X. MEI and
X. CHU. Implementation and analysis of AES
encryption on GPU. In: IEEE 14th Interna-
tional Conference on High Performance Com-
puting and Communication and 2012 IEEE 9th
International Conference on Embedded Software
and Systems (HPCC-ICESS). Washington: IEEE,
2012, pp. 843–848. ISBN 978-0-7695-4749-7.
DOI: 10.1109/HPCC.2012.119.

[7] MCLOONE, M. and J. V. MCCANNY. Rijn-
dael fpga implementations utilising look-up ta-
bles. Journal of VLSI signal processing systems
for signal, image and video technology. 2003,
vol. 34, no. 3, pp. 261–275. ISSN 0922-5773.
DOI: 10.1023/A:1023252403567.

[8] MANAVSKI, S. A. CUDA compatible GPU as an
efficient hardware accelerator for AES Cryptog-
raphy. In: IEEE International Conference on Sig-
nal Processing and Communications ICSPC 2007.
Dubai: IEEE, 2007, pp. 65–68. ISBN 978-1-4244-
1235-8. DOI: 10.1109/ICSPC.2007.4728256.

[9] LEE, W.-K., H.-S. CHEONG, R. C.-W. PHAN
and B.-M. GOI. Fast implementation of block ci-
phers and PRNGs in Maxwell GPU architecture.
Cluster Computing. 2016, vol. 19, no. 1, pp. 335–
347. ISSN 1386-7857. DOI: 10.1007/s10586-016-
0536-2.

[10] BIAGIO, A. D., A. BARENGHI, G. AGOSTA
and G. PELOSI. Design of a parallel AES for
graphics hardware using the CUDA framework.
In: IEEE International Symposium on Paral-
lel and Distributed Processing. Rome: IEEE,
2009, pp. 1–8. ISBN 978-1-4244-3751-1.
DOI: 10.1109/IPDPS.2009.5161242.

[11] TRAN, N.-P., M. LEE, S. HONG and S.-J.
LEE. Parallel execution of AES-CTR algo-
rithm using extended block size. In: 14th In-
ternational Conference on Computational Sci-
ence and Engineering (CSE). Dalian: IEEE,
2011, pp. 191–198. ISBN 978-1-4577-0974-6.
DOI: 10.1109/CSE.2011.43.

[12] MEI, C., H. JIANG and J. JENNESS. CUDA-
based AES parallelization with fine-tuned GPU
memory utilization. In: IEEE International Sym-
posium on Parallel and Distributed Processing,
Workshops and Phd Forum (IPDPSW). At-
lanta: IEEE, 2010, pp. 1–7. ISBN 978-1-4244-
6533-0. DOI: 10.1109/IPDPSW.2010.5470766.

[13] LI, Q., C. ZHONG, K. ZHAO, X. MEI and
X. CHU. Implementation and Analysis of AES
Encryption on GPU. In: 14th International Con-
ference on High Performance Computing and
Communication and 9th International Conference
on Embedded Software and Systems. Washing-
ton: IEEE, 2012, pp. 843–848. ISBN 978-0-7695-
4749-7. DOI: 10.1109/HPCC.2012.119.

[14] IWAI, K., T. KUROKAWA and N. NISIKAWA.
Aes encryption implementation on cuda gpu and
its analysis. In: First International Conference
on Networking and Computing (ICNC). Higashi-
Hiroshima: IEEE, 2010, pp. 209–214. ISBN 978-1-
4244-8918-3. DOI: 10.1109/IC-NC.2010.49.

[15] NISHIKAWA, N., I. KEISUKE, H. TANAKA
and T. KUROKAWA. Throughput and power ef-
fciency evaluation of block ciphers on Kepler and
GCN GPUs using micro-benchmark analysis. IE-
ICE Transactions on Information and Systems.
2014, vol. 97, no. 6, pp. 1506–1515. ISSN 0916-
8532. DOI: 10.1587/transinf.E97.D.1506.

[16] ZOLA, W. M. N. and L. C. E. DE BONA. Parallel
speculative encryption of multiple aes contexts on
gpus. In: Innovative Parallel Computing (InPar).
San Jose: IEEE, 2012, pp. 1–9. ISBN 978-1-4673-
2631-5. DOI: 10.1109/InPar.2012.6339611.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 534

http://dx.doi.org/10.1007/978-3-540-74735-2
http://dx.doi.org/10.1007/978-3-540-74735-2
http://dx.doi.org/10.1109/PCCC.2008.4745113
http://dx.doi.org/10.1109/ICSPC.2007.4728256
http://dx.doi.org/10.1109/HPCC.2012.119
http://dx.doi.org/10.1023/A:1023252403567
http://dx.doi.org/10.1109/ICSPC.2007.4728256
http://dx.doi.org/10.1007/s10586-016-0536-2
http://dx.doi.org/10.1007/s10586-016-0536-2
http://dx.doi.org/10.1109/IPDPS.2009.5161242
http://dx.doi.org/10.1109/CSE.2011.43
http://dx.doi.org/10.1109/IPDPSW.2010.5470766
http://dx.doi.org/10.1109/HPCC.2012.119
http://dx.doi.org/10.1109/IC-NC.2010.49
http://dx.doi.org/10.1587/transinf.E97.D.1506
http://dx.doi.org/10.1109/InPar.2012.6339611

DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

[17] CONTI, V. and S. VITABILE. Design exploration
of aes accelerators on fpgas and gpus. Journal of
Telecommunications and Information Technology.
2017, vol. 2017, no. 1, pp. 1–11. ISSN 1509-4553.

[18] OSVIK, D. A., J. W. BOS, D. STEFAN and
D. CANRIGHT. Fast software AES encryption.
In: International Workshop on Fast Software
Encryption. Berlin: Springer, 2010, pp. 75–93.
ISBN 978-3-642-13857-7. DOI: 10.1007/978-3-642-
13858-4_5.

[19] NISHIKAWA, N., K. IWAI and T. KUROKAWA.
High-Performance Symmetric Block Ciphers
on Multicore CPU and GPUs. International
Journal of Networking and Computing. 2012,
vol. 2, no. 2, pp. 251–268. ISSN 2185-2839.
DOI: 10.15803/ijnc.2.2_251.

About Authors

Ahmed Awadalla ABDELRAHMAN received
the B.Sc. in Computer Engineering from the
MTC, in 2012. Now, he is pursing his Masters’
degree at the Computer Engineering depart-
ment of the Military Technical College (MTC).
His research interests are in implementing highly

computational cryptographic algorithms on GPUs,
such as the AES, blue-fish and two-fish encryption
algorithms.

Mohamed Mahmoud FOUAD received the
Bachelor engineering (honors, with great distinction)
and Masters’ engineering degrees from the Military
Technical College (MTC), Cairo, Egypt, in 1996 and
2001, respectively. As well, he received the Ph.D.
degree in Electrical and Computer Engineering from
Carleton University, Ottawa, Canada in 2010. He is
currently an Associate Professor with the Department
of Computer Engineering at the Military Technical
College (MTC). His research interests are in online
handwritten recognition, image processing, multi-view
video coding, video compression and implementing
GPU-based applications.

Hisham Mohamed DAHSHAN received the
Bachelor engineering and Masters’ engineering degrees
from the Military Technical College (MTC), Cairo,
Egypt, in 1994 and 2005, respectively. As well, he re-
ceived the Ph.D. degree in Electrical Engineering from
Strathclyde University, Glasgow, U.K. in 2010. He is
currently an Associate Professor with the Department
of Communication at the Military Technical College
(MTC). His research interests are in wireless network
security, Internet of things, software-defined network,
and cryptography.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 535

http://dx.doi.org/10.1007/978-3-642-13858-4_5
http://dx.doi.org/10.1007/978-3-642-13858-4_5
http://dx.doi.org/10.15803/ijnc.2.2_251

	Introduction
	The AES Algorithm Mechanism
	Key Expansion Step
	Round Transformations Step
	AES Modes of Operation
	The Fast AES Implementation Algorithm

	Implementation Techniques on GPU Platform
	Memory Optimization
	Parallel Granularity
	GPU Platform Specific Optimization

	Related Work
	Proposed AES Algorithm
	Parallel Granularity
	Encrypted Keys Storage

	Implementation Setup and Performance Evaluation
	Experiments and Results
	Experimental Results on Kepler Platform
	Comparison Between GPU-Based and CPU-Based Implementations
	Experimental Results on Maxwell Platform
	Experimental Results on Pascal Platform

	Analysis and Discussion
	Parallel Granularity
	The Kepler GPU
	Maxwell and Pascal GPUs

	Round Keys Storage

	Conclusions

