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Abstract. To be able to use robots of the same type
in a swarm (in this case differential–drive robots) from
a centralized computer, you need to control them in the
same way even if the robots come from different manu-
facturers. These robots should have the same capabili-
ties: i.e. the same type of sensors and the same type of
control commands. Currently, if we need to add sen-
sors on a robot, we should first find out what are the
hardware capabilities and what are the tools provided by
the manufacturer (some have microcontrollers, others
have ARM processors). The protocol to communicate
with the onboard card (often a serial protocol) is differ-
ent for each robot and we have to take that in account
in our software so that the robots can be interchange-
able.

This paper describes the design and the results of us-
ing a standard interface (bridge) on a robot which al-
lows wireless communication with a centralized com-
puter and local serial communication with a mobile
robot. On this interface, we can connect every sen-
sor we want (infrared, ultrasound, laser, Kinect etc.)
and we can always use the same tools to control them.

Extension of the protocol of the Kobuki base (Turtle-
Bot 2) is proposed to be able to use the same type of
frame as the TurtleBot 2 uses and to continue to use
ROS middleware as is, but with the possibility to use
data from new sensors implemented on the bridge. This
article will focus on the use of the TurtleBot 2, but the
same bridge will be adapted to other robots allowing
their interchangeability in the future.
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1. Introduction

Many works, allowing interfacing between different
robot environments, have been done in the last decade.
Microsoft Robotics Developer Studio (deprecated now)
and Robot Operating System (ROS) were introduced.
ROS is now widely used but some works continue to ex-
ist without ROS. The biggest advantage of ROS is the
large independence of the work for each part (drivers,
middleware [1], etc.) using asynchronous transmission
(topics for ROS).

For hardware environment, the initiative of the
Hardware Robot Operating System (H–ROS) is a very
interesting option for building interoperable robot com-
ponents [2]. But this initiative is very young and the
components are not yet on the market. Currently, in-
terfaces for sensors and actuators are very different:
analog voltage, I2C, SPI etc.

When we need to control robots from different manu-
facturers in a same way (i.e. in a swarm) we should deal
with the problem that each robot has its own on–board
sensors. If we want to add new sensors on a robot, we
need to learn how the on–board controller card works,
what tools there are to program it (some needs to use
cross–compiler on a specific computer) and to see if
adding new sensors is possible or not.

This paper describes the design of an interface which
is used as a bridge between the on–board controller on
each of our robots and a centralized computer else-
where. That is even though each of our robots is
from a different manufacturer with different interfac-
ing specifics. We chose to use open solutions with the
large support of the community for the hardware and
to propose an extension of the protocol of communica-
tion of the Kobuki base (TurtleBot 2) allowing us to
use the same protocol for all of our robots.
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Kobuki base of TurtleBot 2 robot is a widely used
open source hardware project [3]. TurtleBot 2 has
found use in many domains, ranging from research of
robotics [4] through research in social sciences, to ap-
plication in service robotics [5]. This robot also plays
an important role in teaching at universities and high
schools [6]. Industrial applications can also be found.
Kobuki is supported by many environments like ROS,
Gazebo simulator [7], V–REP simulator and others.
Even Matlab supports Kobuki thanks to Robotics tool-
box.

This paper is divided into five sections. Section 2.
contains a description of problems related to the multi–
robot swarm control. Section 3. shows possible so-
lutions to the interface (a bridge) using different hard-
ware technologies. Section 4. deals with the hardware
part we defined and with the extension of TurtleBot 2
communication protocol. And finally, Sec. 5. con-
tains summarized conclusion of the paper and a plan
for a future work on this topic.

2. Problem Definition

We need to control different kinds of the differential–
drive robot: Eddie Robot from Parallax, Inc., TurtleBot
2 with Kobuki base and Khepera IV from EPFL com-
pany, and to use all of them as a swarm, in ROS or
non–ROS environment (e.g. MATLAB). The purpose
of the project is to solve problems (e.g. environment
mapping, swarm formation control [8]) with real robots
and in real conditions.

Even if the characteristics of these robots are dif-
ferent (size, weight), they have comparable maximum
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Fig. 1: Swarm organization, robot’s communication via XBee.

speed. Sensors onboard are different, but we want to
be able to add the same kinds of sensors on each robot.

The heart of our system is a centralized computer
which controls moves of all of the robots in a swarm
(see Fig. 1). The communication needs to be wire-
less. To control low–level tasks (communication with
sensors or actuators) on our robots (Eddie and Turtle-
Bot 2) we currently use computers under Linux and
a printed circuit with Microchip PIC microcontroller.
But on small robots like Khepera IV, it is impossible to
add the heavy weight of the computer. Moreover, the
cost is very high because the computers on our robots
are used only for communication between robots, mi-
crocontrollers and the centralized computer.

3. Solution Analysis

3.1. Constraints

We want to add a low–cost system which allows com-
munication with all sensors in the same way on each
of our robots. This system needs to be widely used
for the drivers to be obtainable from the community
and it also needs to have enough computing power to
be able to execute all the needed tasks at a low energy
cost. Moreover, this system needs to have implemented
emergency situation behaviours (failure of communica-
tion with centralized computer).

Wireless communication is also needed. Our robots
move in different kinds of environment where Wi–Fi
is not always available. The choice was made to use
Wi–Fi only to transmit images or videos if available.

The main communication protocol remains a serial
communication, implemented with wireless technology.
Different wireless technologies have been tested before
implementing on our robots. Lora (Long range) net-
work was evaluated but latency is too high and band-
width too small for the needs of robots’ communication
and control. Nordic nRF24L01+ had also be evalu-
ated and could be an interesting solution for replacing
XBEE, but is less widely available than XBEE.

In this article, authors will only focus on the use of
Digi XBEE for communication, which allows a point
to point (or multiple points depending on the version)
serial half–duplex communication at 115 200 bauds be-
tween our centralized computer and our robots.

3.2. Interface (Bridge)

The card we want to add needs to be able to commu-
nicate transparently with the robot and the central-
ized computer: we need a bridge. The first goal of the
bridge is to communicate locally with the robot and to
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send data to the centralized computer and to do the
same in the other direction.

But we have a second goal: the bridge must be able
to communicate with any new sensors that were ap-
plied. We want, of course, the values of the sensors to
be sent in the same way no matter if they are inter-
faced on the robot itself or if they are interfaced on the
new card itself.

Several projects have been done on this topic, for
example, rosserial [9]. This work was initially done on
Arduino card to communicate through XBEE trans-
mitter / receiver in part of the ROS environment. An-
other work rosbridge [1] allows communication between
ROS and non–ROS environment. In case of rosse-
rial, the implementation is done on Arduino which can
not get our minimal requirement for computing power.
And none of the other works is an answer to our prob-
lem to work both in ROS and non–ROS environments.

For every robot we bought, the manufacturer has im-
plemented controls for all of the sensors and actuators
through a serial protocol included in a USB communi-
cation (115 200 bauds, full duplex). Our goal is to be
able to allow these communications from/to the cen-
tralized computer through an XBEE (serial protocol).
But our system will also interface with new sensors,
reading values from them and multiplex these values
in the serial communication and send them to the cen-
tralized computer.

3.3. Bridge Choice

Authors’ idea is to use an open–source hardware card,
with enough computing power (with an option of future
versions, if possible), widely available and with a strong
community. For our needs, the Raspberry Pi 3 was cho-
sen to be used. The community is large, the cost is low
and there are many interfaces including a standardized
interface: the Global Purpose Input /Output (GPIO).

We also have USB interfaces (which is very impor-
tant not only for our serial communications but also for
some laser sensors) and Ethernet interface (which can
be used for some laser sensors as well). For GPIO, we
have direct control of digital inputs and outputs. And
the serial, SPI and I2C protocols are implemented on
it as well. The last two mentioned protocols are often
used to interface with sensors.

The most notable downside of this card is the ab-
sence of an Analog to Digital Converters (ADC) needed
for some infrared or laser sensors. The desired update
of this card will arrive with the next version of the
Raspberry Pi (more computing power and memory),
but it should be noted that a card of the same format
with the same GPIO is offered by many competitors
(e.g. Asus Tinker board).

4. Hardware Design and
Communication Protocol

4.1. The Robot’s Hat

One big advantage of the Raspberry Pi is its standard
GPIO that is used by many COTS (Commercial off–
the–Shelf) projects, e.g. the Sense Hat [10].

But none of these projects fulfills our needs com-
pletely. For that reason, we instead developed a new
card, which we named “Robot’s hat“. This card will
come on top of the Raspberry Pi using the GPIO con-
nector (see Fig. 2). Our goal is for the card to have only
one type of printed circuit while it would be usable by
all of our robots. Ultrasound and infrared sensors are
included on Eddie and Khepera IV, but not on Turtle-
Bot 2. The Inertial Measurement Unit (IMU) is then
on Khepera IV and TurtleBot 2, but not on Eddie. And
laser sensors aren’t included on any of these robots.

IMU
AD

C

Robot’s
 hat

Raspberry Pi 3

Fig. 2: The robot’s hat on top of the Raspberry Pi.

The printed circuit must have:

• I2C interface for sensors like ultrasound Devantech
SRF08; an I2C connector with eight entries on the
board (it allows direct connection through three
pins — serial clock, serial data and ground).

• ADC converter to convert analog voltage from sen-
sors like infrared Sharp GP2Y0A21YK; we chose
the Microchip MCP3008 allowing us to convert up
to eight analog inputs and to communicate with
Raspberry Pi by the I2C protocol (avoiding using
other pins on the GPIO connector).

• Direct digital interface for sensors like Ping from
Parallax; a connector with eight entries is available
on the card (three pins on top are used if sensor
works in 3.3 V and the three pins on the bottom
are used if sensor works in 5 V).

• Designated space in its centre for the possible need
of an IMU implementation. Microchip MM7150
was selected as the preferred IMU and it includes
a three–axis accelerometer, gyroscope and magne-
tometer pre–programmed with integrated calibra-
tion and sensor fusion algorithms. The protocol
used by this IMU is also I2C, and so can be inter-
faced directly to the Raspberry Pi.
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Tab. 1: Kobuki base bytestream.

Name Header 0 Header 1 Length Payload Checksum
Size [Byte] 1 1 1 N 1

Description 0xAA (Fixed) 0x55 (Fixed) Size of payload
in bytes Described below XOR’ed values of every byte

of the bytestream, except headers

4.2. Analysis of the Communication
Protocol of TurtleBot 2

The communication on all of our robots is done through
serial protocol over USB. The bridge will communicate
to the robot locally and the communication between
the robot and the centralized computer should be as
transparent as possible, see the bottom part of Fig. 1.

The communication works differently on each of the
considered robots. On Khepera IV and Eddie, to
get the sensor values appropriate commands have to
be sent from the computer. On the other hand, the
TurtleBot 2 sends the value of their on–board sen-
sors (bumpers, cliff sensor, IMU etc.) automatically 50
times per second in a bytestream (frame), see Tab. 1.

This frame is divided into different parts:

• Two first bytes of each frame are in hexadecimal:
0xAA 0x55. Our software must find these two
values to be sure to get the beginning of a frame.

• The 3rd byte defines the length of the payload (size
of the rest of the frame except checksum). As the
3rd byte contains 8 bits, we can have 255 bytes for
the payload, so 259 bytes at maximum for a frame
(255 bytes of payload + 2 bytes for header + 1
byte for length + 1 byte for checksum).

• The payload is divided into sub–payloads (see
Tab. 2). List of the used payloads can be found in
Tab. 3. As we can see, some of the sub–payload
IDs are reserved, allowing us to create new sub–
payloads later down the line.

• The last byte is a checksum to verify the integrity
of the data.

We want to be able to use ROS as well. TurtleBot 2
is widely used and interfaces well with ROSMiddleware
on computers. Our idea was to use the same protocol as
the one implemented on TurtleBot 2 to transmit values
of the different sensors on all of our robots, except for
Kinect that will use Wi–Fi if available (the bandwidth
needed is too high for image transmission).

Tab. 2: Structure of sub–payloads.

Name Header Length Data
Size [Byte] 1 1 N

Description Predefined
identifier

Size of data
in byte(s)

Described
below

Tab. 3: Structure of feedback packets.

ID Description
1 Basic core sensor data
2 Reserved
3 Signals from docking station
4 Gyro data both angle and angular velocity
5 PSD data facing floor
6 Current of wheel motors
7 Reserved
8 Reserved
9 Reserved
10 Version number of Kobuki hardware
11 Version number of Kobuki hardware
12 Reserved
13 Raw ADC data of digital 3–axis gyro
14 Reserved
15 Reserved
16 Inputs from 25–pin expansion port
17 Reserved
18 Reserved
19 Unique number to identify robot
20 Reserved
21 PID gain value of wheel velocity controller

4.3. Protocol Design

1) Frame Size and Frequency

Turtlebot 2 sends 50 frames per second by default. If
we send the maximum size of the frame at 50 Hz, we
will get 129500 bit·s−1 which exceeds the one way ca-
pacity of our serial protocol(half duplex wireless com-
munication) by 12 %. We also need to preserve band-
width in the other way to be able to send commands
from centralized computer to the robot.

2) Protocol Implementation

We chose to use the Python language because most of
the sensor drivers from the community are in Python.
For communication, we use the serial module for
Python which allows us to get a bi–directional serial
communication both to the robot and to the XBEE
module.

To be sure that no bytes are lost on arrival, we used
threads in our Python implementation. The implemen-
tation works in this way:

• Two threads are used to verify if bytes arrive from
the XBEE (i.e. from the centralized computer) or
if the bytes arrive from the robot on the serial link.
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• If data arrive from the computer, the data are
stored in a buffer, the checksum is verified, and
in the case the checksum matches, the frame is
directly sent to the robot to avoid latency.

• If data arrive from the robot, they are stored in
a buffer and checksum is verified. This frame is
then compared with all of the previous frames ar-
rived in the last 100 ms and if it’s a new frame, we
send the frame with new fields (see below) to the
computer. Each frame sent to the computer con-
tains a sub–payload with the robot’s unique num-
ber, allowing the computer to find out from which
robot the data received comes from (see Tab. 4
and Tab. 2). If an exact frame was sent in the
last 100 ms, we throw the new one away (to lower
the frequency down to 10 Hz). See Fig. 3 for the
algorithm.

• One thread is implemented to read the values of
the sensors connected directly on the Raspberry
Pi. When new values are available, they are added
to the frame sent to the computer using one of the
reserved IDs that hasn’t been used yet.

Waiting for data from robot

Frame complete ?

Save current frame
Remove all frames 
older than 100ms

Compare current CRC frame to all
CRC stored from previous frames

Candidate identical CRC ?

Current frame identical to frame 
selected (verification byte by byte) ?

Remove current saved frame

Add custom fields if new
data available from sensors

Recalculate CRC

Send frame to XBEE 
(to remote computer)

no
yes

no

no

yes

yes

Initialisation, opening connections

Fig. 3: Data manipulation algorithm.

To be able to add new data to the frame with no
effect on ROS middleware, we must define new IDs that
will be ignored by the nodes currently used. The new
IDs that we have defined are some of the reserved IDs
in the Kobuki protocol (in hexadecimal), see Tab. 4.

The sub–payloads are then defined by using another
similar sub–payload of the Kobuki protocol, see Tab. 5.

Tab. 4: Structure of feedback packets.

ID Data description
0x02 Number of the robot
0x81 Ultrasound data
0x82 Infrared data
0x83 Laser data

Tab. 5: Structure of feedback packets.

Description Size
Feedback identifier 1 byte

Nb of frames needed for
a complete transmission (only
needed for laser 0x83, because
data can exceed frame size)

1 byte

Size of the data field
of this sub–payload 1 byte

Size of each value
1 byte (value = 1 for
uint8, = 2 for uint16,
and 4 for unit32)

Timestamp 2 bytes
Data of the sensors 1 to 192 bytes

The implementation of the protocol in Python is fin-
ished but works only partially. We have developed it
in Python language, using threads and queues to com-
municate between the threads. If the transmission is
implemented only in one way (data values from sen-
sors + frame from Kobuki) using two threads, then the
system works great. But if threads for the other way
are added, then the performance significantly decreases
(very high CPU usage and loss of some frames). This
problem is due of the implementation of GIL (Global
Interpreter Lock) in python which limits the use of only
one core on the CPU (instead of four on the Raspberry
Pi 3). A partial reimplementation of our system is cur-
rently done using the multiprocessing module (tasks
will be used instead of threads).

5. Conclusions

In this paper, we present our design of a standard in-
terface for robots from different manufacturers. Its
goal is for our centralized computer to communicate
in the same way with all of our robots (all of them are
differential–drive robots from different manufacturers).

The core of our system is a widely used computer
card: the Raspberry Pi version 3. On top of this, we
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have added connectors for different kinds of sensors (in-
frared, ultrasound, laser) in different protocols (I2C,
SPI, digital and analog inputs) allowing us to add all
necessary sensors if not included on the robot. The in-
terface to communicate between sensors and the ARM
processor on the Raspberry Pi uses Python language.

Our work is not focused only on the hardware part
but also on the communication protocol. To be able to
reuse middleware ROS, we have added some extensions
to the Kobuki base protocol (TurtleBot 2) allowing us
to communicate with ROS nodes as usual. In a future
work, we will add ROS nodes to be able to use our
frames which include values of the added sensors.

The next step is to use the Raspberry Pi on our
other robots (Khepera IV and Eddie) and to program
it to get values from sensors at 10 Hz (contrary to the
TurtleBot 2 which sends sensor values on its own). The
Raspberry Pi also needs to be programmed to trans-
late orders of the centralized computer (which are the
same commands as for the TurtleBot 2) to commands
understandable by all of these different kinds of robots.
The following step is then to automatically detect to
which robot is the Raspberry Pi connected and ap-
propriately change the program. The goal is to have
a swarm of robots from different manufacturers and be
able to use each of them in the same way from a cen-
tralized computer. To allow this, we have added in
the frame a unique number for identification of each
robot, which is a great improvement for using robots
in swarm, especially in ROS environment.
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