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Summary Our work at Ireland’s National Rehabilitation Hospital involves designing communication systems for people 
suffering from profound physical disabilities. One such system uses the electro-oculogram, which is an (x,y) system of 
voltages picked up by pairs of electrodes placed, respectively, above and below and on either side of the eyes. The eyeball 
has a dc polarisation between cornea and back, arising from the photoreceptor rods and cones in the retina. As the eye rotates, 
the varying voltages projected onto the electrodes drive a cursor over a mimic keyboard on a computer screen. Symbols are 
selected with a switching action derived, for example, from a blink. Experience in using this mode of communication has 
given us limited facilities to study the eye position control system. We present here a resulting new feedback model for 
rotation in either the vertical or the horizontal plane, which involves the eyeball controlled by an agonist-antagonist muscle 
pair, modelled by a single equivalent bidirectional muscle with torque falling off linearly with angular velocity. We have 
incorporated muscle spindles and have tuned them by pole assignment associated with an optimum stability criterion. The 
dynamics also indicate an integral controller taking its input from a bang-bang element with dead zone. There is, in addition, 
a pure time delay element involved. Describing Function analysis and simulation demonstrate that in this application the time 
delay is outside the feedback loop, and is probably associated with set-point generation at a higher level in the brain’s 
hierarchy of control systems. A second input could be involved at the spindle level, active when tracking predictable target 
motions. 
 
1. INTRODUCTION 

 
It has been known since the mid 19th century 

that the eye has a standing potential across it (see, 
for example, the summary by Geddes and Baker [1]) 
whose sign is dependent on the species. In humans, 
the cornea is positive with respect to the rear of the 
eyeball. As the eye moves in its socket, the voltage 
picked up by a pair of electrodes placed 
horizontally—on either side of the eye—or 
vertically—above and below the eye—can be 
modelled by the simple equivalent circuit shown on 
Fig. 1, with a typical voltage vs. angle relation 
graphed on Fig. 2. These have been adapted from 
Geddes and Baker [1]. We have harnessed these 
horizontal and vertical electro-oculograms (EOGs) 
in a communication system for very profoundly 
disabled people at Ireland’s National Rehabilitation 
Hospital. The principle of this is illustrated on 
Fig. 3. Each square on an alphabet board on a 
computer screen can be highlighted under control of 
the EOG voltages. During a blink, the vertical EOG 
voltage is markedly reduced. This is detected and 
used to write the currently highlighted letter into a 
message space. Multiple lines of text are 
accommodated by the “Enter” command. 

Having harnessed the EOG voltages, we were 
able to do a very simple experiment and from it 
deduce a tentative new model for the eye gaze 
control system in this context. We set up a square on 
the computer screen, 1.8cm on the side. This was 
divided into four sub-squares, top left and bottom 
right black, top right and bottom left white. The 
subject was asked to focus on the centre of the 

square, which was then suddenly translated 
horizontally by an optical angle of 15º (equivalent to 
0.2618 radians) and the resulting EOG recorded. A 
recording typical of many is shown on Fig. 4. The 
most significant features of this are the pure time 
delay of about 0.235 seconds, and the almost 
perfectly linear excursion over most of the range. 
This response is almost identical with one given as 
Fig. 164.5 on page 2481 of Bronzino [2]. 

Drawing on and extending the work of 
Stark [3], we propose to explore the control system 
structure shown on Fig. 5. For each plane of motion, 

Fig. 1. Genesis of the EOG. 
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horizontal and vertical, there is an agonist-antagonist 
pair of extraocular muscles. Contraction of one 
rotates the eyeball in the positive θ  direction, and of 
the other in the negative θ  direction. We condense 
these two muscles into a single equivalent muscle, 

which can rotate the eyeball in either direction. 
There is no doubt from the physiology of the eye 
[Davson, 4] that the eyeball muscle torque is 
controlled by a muscle spindle, although we have 
not seen that feature invoked in the work of Stark [3] 
or later authors. However, we quote Davson [4]: 
“Thus, the spindles in the extraocular muscles are 
exactly similar to those found in limb muscles and it 
is therefore impossible to ignore their role in 
adjusting the force of contraction through a feedback 
mechanism that indicates the length of the muscle at 
any moment.” The spindle feedback mechanism is 
represented by the inner loop in our model. One of 
our primary objectives is to explore the application 
of a principle of optimum stability, which we 
tentatively invoke to tune this inner loop. 
 

2.  TUNING THE INNER FEEDBACK LOOP 
 
The muscle spindle essentially senses the error, 

le , between a locally generated reference value for 
θ  and the current value of θ , and uses it to generate 
the gross rotational torque, gT , on the eyeball. 

Drawing on Stark’s [3] work on control of the hand, 
we take the form of the transfer function relating 

)(sEl  to )(sTg  to be 
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We have to “tune” this controller by proposing 
values for its parameters. 

As the eyeball rotates (or as a muscle contracts in 
general), the gross torque falls off with the velocity 
of contraction. This is generally in a nonlinear 
fashion, usually taken to be quadratic. However, in 
the interests of getting a linear dynamical model—at 
least at this initial stage of analysis—we assume that 
the fall-off in torque is linear in dtdθ , thus giving 
the net torque applied to the eyeball as 
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Westheimer [5] has proposed the following model 
relating θ  to nT : 
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Combining this with eqn. (2) and taking the Laplace 
transform with zero initial conditions gives 

 

J
K

s
J

Ff
s

J
sT

s
sG

g +++
==

2

1

)(
)(

)(
θ

 (4) 

 

Fig. 2. Approximate dependence of the EOG on θ. 

Fig. 3. Illustration of a communication system based 
on the EOG. 

Fig. 4. EOG in response to a target suddenly 
translated in the horizontal plane. 
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Westheimer [5] gives the values, in SI units, 
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With 0=f , these values make )(sG  a second 
order linear system with damping ratio 7.0=ζ  and 
undamped natural frequency 120 radians per second. 
We can obtain no guidance from the literature as to 
what value to assign to Jf , so we propose 
tentatively but conveniently that it increases the 
damping ratio to 1=ζ  (critical damping). This 

gives 72=Jf , and results in 
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The transfer function relating θ  to the local 
reference value, rlθ , then becomes 
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The denominator here is the characteristic 
polynomial of the inner loop, whose roots determine 
the nature of its dynamics. We assume that the 
function of the spindle is to speed up the eyeball 
response, so that the roots of the characteristic 
polynomial lie to the left of the value 120−=s . We 
propose to place them all at the location bs 120−= , 
with 1>b . This gives 
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As shown by Cogan and de Paor [6], assigning all 
the roots of a characteristic polynomial to the same 
location—which is an extension of the idea of 
critical damping for a second order system— has an 
interesting optimum stability property. If all 
controller parameters but one are held at their 
nominal values then, as that one is varied through its 
nominal value, the right-most root is as deep in the 
left half plane as possible. 

Dividing Eqn. (8) through by ( )2120+s  leads 
simply to the expressions 
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We have explored various values of b  and found 
that 2=b  gives a very good final match to the 
response of Fig. 4. The resulting expression for 

)(1 sC  is  
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For a physical reason, however, we have not used 
)(1 sC  as given by Eqn. (10), but have developed a 

close approximation to it. The reason is that 
Stark’s [3] work strongly suggests that both poles of 

)(1 sC  should be real, whereas those of )(1 sC  as 
computed are complex. To retain reality of the poles, 
we first of all approximated the denominator of 

)(1 sC  by 22 )400(160000800 +=++ sss . We then 
scaled 0f  so that the static gain of )(1 sC , i.e., 

)0(1C , was preserved, and finally scaled 1f  so that 
7204.152068001 =f . This gave the expression for 

)(1 sC  actually employed: 
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To give an idea of the accuracy of this 
approximation, the unit step responses of the two 
controllers described by Eqns. (10) and (11) are 

θ DELAY NL C2(s) C1(s) G(s) 

nonlinearity 
 

controller 
 

possible signal from the brain 

muscle 
spindle 

eyeball 
dynamics 

θref, from brain 

+ _ + _ 

e y θrl el 

Fig. 5. Our proposed feedback control system. 
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shown on Fig. 6, and their Bode magnitude diagrams 
are compared on Fig. 7. 
 
3.  TUNING THE OUTER LOOP 

 
Taking guidance from Stark [3], but not 

following the detailed structure of his model, we 
now propose that in the forward path of the outer 
loop we have a nonlinear function followed by a 
controller. Stark’s [3] treatment suggests that the 
controller may be modelled by a pure integrator, 
with transfer function 

 
s

k
sC i=)(2   (12) 

However, we differ from Stark in the form of the 
nonlinear function )(eNL . Stark indicates that this 
has a dead zone, i.e., 0)( =eNL  for 03.0|| <e  
radians. We preserve this feature, since it represents 
the fact that no correction need be applied if the 
image remains focussed onto the fovea, which is the 
region of greatest sensitivity centred on the optical 
axis. However, for errors outside this region, Stark 
has a linear variation of )(eNL  with e , and with this 
feature we have not found it possible to reproduce 
the linear transition of the response on Fig. 4. With 

)(2 sC  an integrator, it is hard to escape the 
conclusion that )(eNL  is saturated for 03.0|| >e , 
and that the input to the inner loop is ramping up 
linearly during the transition. We consequently 
adopt the behaviour |||)(| SeNL =  for 03.0|| >e , 
with S  a constant, positive value (the saturation 
level). 

It is clear that during the transition depicted on 
Fig. 4, the rate of change of θ  is governed by the 
product iSk , so that one of these parameters can be 
scaled arbitrarily. We normalise S  to the value 

1=S . 
With S  normalised to unity, only the parameter 

ik  remains to be tuned to get the response closest to 
that shown on Fig. 4. By simulating the complete 
system using the Swedish package SIMNON, we 
have homed in on the value 

 19=ik   (13) 

With regard to the pure time delay of 0.235 seconds 
in the response, this has been placed outside the 
feedback loop, for a reason to be explained in the 
following section. The resulting response, 
mimicking conditions in the experiment graphed on 
Fig. 4, is shown on Fig. 8. 
 
4.  OSCILLATIONS IN THE SYSTEM 

 
In seeking to place the time delay correctly, we 

noticed that even a very small delay (to be quantified 

below) placed within the loop led to continuous 
oscillations. The same happens if ik  is raised 
sufficiently, or if the width of the dead zone in NL  
is decreased sufficiently. In all these cases the output 
oscillation is almost sinusoidal, and this suggests 
that the classic Describing Function technique  
[Elgerd, 7] can be used to explore the conditions for 
oscillation. 

In applying the describing function, we assume 
that the error signal, e , in the outer loop is 
oscillating (almost) sinusoidally: 

 )sin( tMe ω=   (14) 

For DM ≤ , where D  is the half-width of the dead 
zone ( 03.0=D  in this case), 0=y , which is of no 
interest. However, for DM > , y  is periodic, of 

period ωπ2=T , but non-sinusoidal. In fact it is a 

Fig. 6. Unit step response of the two spindle transfer 
functions: Eqn. 10 (a) and Eqn. 11 (b). 

Fig. 7. Bode magnitude diagram of the two spindle 
transfer functions: Eqn. 10 (a), Eqn. 11 (b). 

Fig. 8. Overall step response of the complete system. 
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Fig. 9. Frequency response locus of Gf(s). 

gapped square wave. If we expand y  in a Fourier 
series, we find that, due to the symmetry of NL , it 
has only odd harmonics, and all of those above the 
fundamental frequency are effectively filtered out in 
passing through the integrator and the inner 
feedback loop. Thus, as far as its effect on the 
observed oscillation is concerned, we can 
approximate y  by its fundamental component, 
readily calculated as 

 )sin(.
4 22

t
M

DMS
y f ω

π
−=  (15) 

Comparing Eqns. (14) and (15), we see that for this 
almost sinusoidal oscillation, NL  can be 
characterised by a gain, referred to as its Describing 
Function, DF : 
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Plotted as a function of M , this reaches a peak 
value of 
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In the extreme case 221.21max == DFDF  (for 
1=S , 03.0=D ), we can use an informal 

application of Nyquist analysis [Elgerd, 7] to 
explore conditions for oscillation. To do this we plot 
the frequency response locus of the function 
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This is shown on Fig. 9, which also indicates certain 
“robustness margins”. These tell by how much the 
frequency response locus should be modified in 
various ways to pass it through the critical point 

)0,1(− , which corresponds to sustained oscillations. 
Thus, for example, the gain margin of 1.888 means 
that if ik  is multiplied by this factor, oscillation sets 
in. This is illustrated on Fig. 10. Similarly, the delay 
margin of 0.0047 means that if a pure time delay of 
this amount is placed in the forward path of the outer 
loop, oscillation ensues at the angular frequency 
108.3 radians per second. The phase margin of 
29.11°, also effective at the angular frequency 

3.108=ω  radians per second, means that if an extra 
dynamic element were inserted in the forward path, 
with a phase lag of 29.11° at the stated angular 
frequency, the frequency response locus would pass 
through the critical point. We have confirmed the 
findings with respect to gain margin and delay 
margin by simulation. The very small delay margin 

is the reason why we had to place the observed time 
delay of 0.235 seconds outside the loop. 
 
5.  DISCUSSION 
 
As an offshoot to development of a communication 
system for a disabled people, based on the EOG, we 
performed a simple experiment to track a suddenly 
translated target, and used it to produce a new 
feedback model for the eye gaze control system in 
this application. Muscle spindles have been 
incorporated into this type of model for the first 
time. In the absence of any detailed information, the 
resulting inner feedback loop has been tuned by a 
pole-assigning procedure, associated with a principle 
of optimum stability. In the outer loop, the 
nonlinearity has been modified from that suggested 
by Stark [3] and, on tuning the integral controller 
gain through simulation experiments, a very close 
match to the experimental result. Robustness 
margins have been explored with the help of 
Describing Function analysis, and this has been 
decisive in placing the time delay outside the control 
loop. We hope that this exercise in applying several 
techniques from Control Theory to a living system 
will be of interest to the Biomedical Engineering 
community. 
 

Fig. 10. Oscillations due to setting ki just above its 
threshold value. 
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