
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

Software Implementation of Secure Firmware
Update in IoT Concept

Lukas KVARDA, Pavel HNYK, Lukas VOJTECH, Marek NERUDA

Department of Telecommunication Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic

kvardluk@fel.cvut.cz, hnykpav1@fel.cvut.cz, vojtecl@fel.cvut.cz, nerudmar@fel.cvut.cz

DOI: 10.15598/aeee.v15i4.2467

Abstract. This paper focuses on a survey of secure
firmware update in the Internet of Things, design and
description of safe and secure bootloader implementa-
tion on RFID UHF reader, encryption with AES-CCM
and versioning with use of external backup flash mem-
ory device. In the case of problems with HW compat-
ibility or other unexpected errors with new FW ver-
sion, it is possible to downgrade to previous FW im-
age, including the factory image. Authentication is
provided by the UHF RFID service tag used to extract
unique initialization vector of the encryption algorithm
for each update session. The results show slower update
speed with this new upgrade method of approximately
27 % compared to older one, using the only AES-CBC
algorithm.

Keywords

Firmware versioning, IoT, security.

1. Introduction

Concept of the Internet of Things (IoT) is very topical
and popular theme as can be seen on forecasts made by
Gartner research company [1]. According to this esti-
mate, a number of connected devices will be 31 percent
higher than last year, which means 8.4 billions of con-
nected IoT devices in 2017. Applications for the con-
sumer segment will represent 63 percent (5.2 billion)
of the total number of applications in use, for instance,
digital set-top boxes, game consoles, smart TVs and
PCs. The rest, 37 percent (3.1 billion) are devices like
commonly used commercial security cameras or vari-
ous kinds of intelligent sensors which will be most in
use by businesses. According to forecast, connected
devices in 2020 (20.8 billion) mentioned by Gartner

last year and this year’s estimate, which is 400 mil-
lion smaller, we can assume, that current rising trend
is slowly approaching the imaginary ceiling. However,
we still talk about the huge amount of devices, where
security should not be underestimated.

There are still a number of factors contributing to
the deterioration in IoT security. One of them is the
fact, that many IoT device producers use the same
Software Development Kit (SKD). The problem may
occur if the company that produces the SDK releases
a new version riddled with bugs, then all devices using
this SDK will be vulnerable just through these bugs. If
the same software is used, it will not depend on the de-
vice type. The second one is that the security measures
are often neglected by users, such as keeping default
device name and password, or unconcerned with regu-
lar updates of firmware (FW). The last major problem
is that manufacturers of IoT devices neglect or does
not solve security at all. As we mentioned in [2], this
year, the manufacturers also try to get the lowest pos-
sible cost of device, short time to market and lower
product maintenance costs when deploying firmware
update mechanisms. This approach leads to the fact
that many of devices are not fully tested in time and
for the security issues. For these reasons, there is
a need for a frequent update of FW with a new version
that will fix bugs.

Enormous and still growing number of IoT devices
makes it impossible to implement the FW update by
sending the device back to the manufacturer or by
sending manufacturer technical support which would
be solving the update directly on device in the field
[3]. If these options are used for FW update it costs
too much money, and take up too much time. There-
fore, these update methods are inappropriate, and
a remote FW update is becoming increasingly used in-
stead. The ability to re-uploading newer versions of
FW to deployed devices without major costs, has in
addition to fixing bugs other benefits, such as allowing

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 626

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

service and support, which can significantly extend life-
cycles of device. According to IEEE [4], these services
should be a matter of course today.

On the other hand, this way of updating brings us
the risks that security experts have warned us for a long
time. Unfortunately, in most cases, security measures
are neglected, which may lead, for example, to:

• threats to intellectual property,

• unauthorized device control,

• product cloning, revenue reduction, and trade-
mark damage,

• compromised device communication,

• MITM (Men in the Middle attack) and

• access to another system.

The need for IoT security is illustrated by the re-
cent massive DDoS attacks by Mirai botnet [5] on
DYN servers that took down Twitter, Spotify, Net-
flix, GitHub, Amazon and other websites. These at-
tacks were led by IoT devices such as digital video
recorders, home routers, security cameras, etc. Accord-
ing to ESET research suggests [6], at least 15 percent of
home routers are unsecured from the estimated global
number of 105 million devices and therefore there is
a huge threat of infecting malware such as Mirai.

Another disturbing attack was demonstrated by re-
searchers who managed to take control of Jeep and
were able to turn off the engine remotely while driving
on the highway. To protect both driver and passengers
secure update of vehicle electronics is essential [7] and
[8]. Because of these and many other threats, the risk
of a cyber attack on the FW update process should not
be underestimated.

2. Today Update Secure
Solutions

Not everyone underestimates the security risk when up-
dating FW; there are companies offering a ready-made
solution. Atmel company, for example, offers the demo
kit to demonstrate a secure FW update over the Eth-
ernet. The demo kit uses the ATSAM4SD32 micropro-
cessor (MCU), dual bank Flash firmware update and
authenticated encryption AES-GCM (Galois/Counter
Mode) mode support. Atmel also offers security at
a hardware level called CryptoAuthentication devices.
These devices can handle secret keys protection, key
generation and their management. Also, it solves se-
curity of communication bus between the MCU and
the crypto device by authentication, thus protecting

against MITM attacks. Compared to others, crypto
devices have another significant advantage, which lies
in the design layout. Atmel uses the active metal shield
of package to protect the chip itself, which prevents the
use of side-channel attacks, but also detects if someone
tries it.

Another big company offering the made-ready solu-
tion is Texas Instrument with their Crypto-Bootloader.
This design allows to securely update an FW of micro-
processor directly connected to the network. They use
a custom utility to use WAN to access or connect to
endpoints. This system is implemented on the ultra-
low power MCU MSP430FR5969 containing hardware
accelerator for AES-256.

The Czech company Jablotron with the open source
BigClown project also deals with IoT security solu-
tions. This is a modular system built on the MCU
STM32L083CZ, which, like the previous one, has built-
in AES 128-bit encryption machine. Authentication
and update of AES security keys are solved here by the
Atmel crypto device. Specifically, it is ATSHA204A
using the SHA-256 Hash algorithm with the Message
Verification Code (MAC) and Hash-based Code Verifi-
cation (HMAC).

There are also companies entering to market with
finished products. One of them is Thales company,
which offers HSM (Hardware Security Modules) allow-
ing key generation and safe storage. Unlike previous
designs, authentication is done by assigning unique dig-
ital certificates generated by HSM to each device sep-
arately.

Given that there are many suggestions on how to
ensure secure FW updates [9]. It would be wise for
anyone who wants to participate in the world of IoT,
take these possibilities into account and use them for
the new designs. Or, at the very least, design the own
security way to keep the FW update process safe. Poul-
ter, Johnston and Cox [10] proposed an implementa-
tion of the Secure Remote Update Protocol (SRUP)
for IoT devices.

3. Implementation Details

When designing the update process, account should be
taken not only of possible threats but other variables,
such as memory requirements, computing power, power
consumption, security level, and the cost of the pro-
posed system. In our design, we tended more to com-
puting performance, memory, and price at the expense
of security when choosing an encryption algorithm, as
we apply the FW update to the existing AutoEPCIS
UHF RFID Reader in third version of hardware in Sub-
sec. 3.1.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 627

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

Each cryptographic algorithm should provide three
basic features: privacy, integrity, and authenticity. In
our previous secure FW update [2], AES-CBC algo-
rithm that provided only the first two properties is
used. The authenticity has to be implemented as well.
One way to do this is to use digital signatures. From
the point of view of computing power and memory
requirements, the PIC32MX microprocessor, which is
used in AutoEPCIS UHF RFID Reader, should be
able to handle more demanding asymmetric encryp-
tion (public key, private key). Nevertheless, we have
opted out of this option, because it is necessary to use
a third-party Certification Authority (CA) to authen-
ticate the user. We want to avoid this solution because
of the prices for these services. Although digital sig-
nature can be used without CA, then the method can
be susceptible to MITM attack. Alternative solution
is the use of crypto RFID tag [11].

In our design, the authenticated encryption algo-
rithm in CCM mode is used. This algorithm does not
threaten the above-mentioned MITM attack or mal-
leability attack [12]. The sufficient attention must be
given to the problem with the safe storage of secret
keys encounters since key storage is one of the most
critical parts of security. When designing new devices,
using of special ICs for safe key storage as mentioned
in the Sec. 2. is recommended, because HW security
is much stronger than SW security. In our case, we
are limited by the existing HW, so we choose to store
secret keys into the FLASH memory of MCU, which
has protection against reading data from memory. We
consider this action to be fully satisfactory for our pur-
poses.

Due to the ease of implementation and utilization of
the existing system, we have chosen to use the AES-
CBC encryption algorithm. It uses a service RFID tag
which is located in the vicinity of the reader and en-
sures authentication. The RFID tag detects the func-
tionality of the RF part of the reader (whether the
antennas are connected) and to measure the Received
Signal Strength Indication (RSSI) changes to monitor
if there is a change in the environment such as shad-
owing the tag, coaxial cable damage or antenna move-
ment.

The main idea of a safe FW update is that only the
service RFID tag owner (physical security key) is able
to update a device by certified NFI (New Firmware Im-
age) from the manufacturer. We ensure that we gener-
ate a Pseudo Random Number (PRN) that is stored
in the user memory of the tag. The PRN size de-
pends on the size of the service tag user memory. Con-
fidex’s UHF RFID tag with the Impinj Monza 4QT
chip, which has a 512-bit user memory size is chosen,
so the PRN has the same size. From this PRN, 128 bits
are randomly selected and declared as an Initialization
Vector (IV). This is unique for every other session and

must not be repeated. Subsequently, NFI encryption is
performed by a secret key and created IV. The secret
key is also generated as a pseudo-random sequence of
numbers and then programmed in a trusted environ-
ment to the MCU along with the bootloader. This
encrypted NFI is sent along with SNO (Selected Num-
bers Order) positions to the device. The big advantage
of AES-CBC method is not sending IV, but only po-
sitions that will be set up on the side of the device,
meaning that even if the attacker gets the data, with-
out appropriate service tag they will be useless. In
addition, the PRN tag collection is internal, the device
does not publish the memory of the tag, it only loads
it into the temp memory and deletes it after updat-
ing. So if an attacker wants to get a PRN, he has to
be physically in place and read this tag with another
RFID UHF reader. He is still able to decrypt the NFI,
because he needs the secret key stored in the FLASH
MCU, which we consider to be a considerable effort,
compared to what he would have obtained in our case.
In addition, it would still be possible to encrypt the
SNO itself and lock the service tag password, but here
we get to the security by obscurity.

We assume that the customer has received a service
tag along with the device and therefore both parties
have a secret key and PRN. The proposed FW update
method is shown in the Fig. 1 and can be divided into
five basic steps: The first is to generate the NFI that we
want to update the device. Next, we will need a session
IV, which is obtained by applying the PickRandom128
function to an already generated PRN. This feature
randomly selects 128 bits, and at the same time stores
their position against a 512-bit unit. The output is
our session IV and SNO. Second, NFI encryption is
performed using the AES-CBC algorithm using session
IV and the secret key. The third step is the distribution
of the encrypted NFI and SNO to the target device.
The fourth step is an extraction of session IV using the

:020000040000fa
:020000041fc01b

:042ff400fb7bf8ff6c
:020000040000fa
:020000041fc01b

:042ff8005bce60ff4d
:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000fa
:020000041d01dc

NFI

AES – CBC
Encryption

12
8

bi
t

IV

12
8

bi
t

RURąČO;ř$ÂjĽńfŁ –
q€ęˇŁîĹŞÜá‹8™z–÷
ń¨žgâtÍŕË©ž´°ŹňŃRž
ZĆâ˛ĺ´ą‹uě™Čž}ăÁ§
Ţ©*™?ŘçšVJś´)_hke
;ĺ–W+rńâś‹’ÝUsň6
‹ż#CüÜS¸F'Ż = §

G&ˇ„9wÍőr;]-~ůÍ0Ëe
š·L ČáňěĽ™Ş$Ť0Â

…ťÎ´t›fď)xŹ' ·Ń|{b‰—đ
ZĆâ˛ĺ´ą‹uě™Čž}ăÁ§
Ţ©*™?ŘçšVJś´)_hke

NFI

Transport
NFI

Untrusted Area
RURąČO;ř$ÂjĽńfŁ –
q€ęˇŁîĹŞÜá‹8™z–÷
ń¨žgâtÍŕË©ž´°ŹňŃRž
ZĆâ˛ĺ´ą‹uě™Čž}ăÁ§
Ţ©*™?ŘçšVJś´)_hke
;ĺ–W+rńâś‹’ÝUsň6
‹ż#CüÜS¸F'Ż = §

G&ˇ„9wÍőr;]-~ůÍ0Ëe
š·L ČáňěĽ™Ş$Ť0Â

…ťÎ´t›fď)xŹ' ·Ń|{b‰—đ
ZĆâ˛ĺ´ą‹uě™Čž}ăÁ§
Ţ©*™?ŘçšVJś´)_hke

NFI

AES – CBC
Decryption

:020000040000fa
:020000041fc01b

:042ff400fb7bf8ff6c
:020000040000fa
:020000041fc01b

:042ff8005bce60ff4d
:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000fa
:020000041d01dc

NFI

IV

FLASH
MCU

Service tag
:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000fa
:020000041d01dc
:020000040000fa
:020000041fc01b
020000040000fa
:020000040000fa
:020000041fc01b
020000040000fa

PRN

:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000f0

Manufacturer Device

Pick
random
128 bit

:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000f0

Pick
SNO
128 bit

:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000f0

:020000040000fa
:020000041fc01b
:042ffc00fcffff7f58
:020000040000f0

12
8

bi
t

SNO

SNOSNO

SNO

Fig. 1: Proposed FW update method.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 628

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

PickSNO128 function. This feature has a 512-bit PRN
stored in the service tag and received SNO. Based on
this information, the correct session IV is reproduced.
The last step is to decrypt the NFI and then upload it
to the MCU. A detailed description of the FW update
process is described in Subsec. 3.3.

3.1. AutoEPCIS UHF RFID Reader

Last year, we redesigned hardware of the AutoEPCIS
UHF RFID Reader, mainly because of need for more
adapt power supply. Now the reader is not limited by
5 V input, but can be powered from wider range of
input voltage (7–13 V).

Summary of changes in the third version of reader,
Fig. 2:

• more adapt power supply circuit,

• transmitter leakage suppression,

• packet acknowledgment,

• external 32 Mbit SPI flash memory,

• EMI shielding and

• HW antenna detection.

Fig. 2: AutoEPCIS UHF RFID reader version 3 – Top View.

3.2. Previous Bootloader

In the old version of the bootloader, as presented [2],
symmetric encryption AES in block cipher mode of op-
eration (CBC) is used. Keys are stored in MCU flash
memory space and the space is code protected to pre-
vent unauthorized readout (MCU can be only erased).

To decrypt FW image, it is firstly necessary to store
the new FW image to temporary memory area of MCU
and then perform decryption process, because of no
other storage unit. This created memory space is only

a temporary space, where its size depends on the size
of uploaded FW Fig. 3.

In case of updating error, report to the terminal is
created and device needs to be flashed again.

0 300100

1

0

2 3

512
Flash size of MCU (kB)

Actual
FW

Bootloader
Temp
FW

Fig. 3: Partitioning of MCU Flash memory.

3.3. Redesigned Bootloader

We modified our own protocol to send encrypted
data to the device, added authentication and integrity
check. All data is sent to the device via UDP. The
maximum data payload is limited to 1024 bytes, which
is a compromise between flash speed and RAM usage
of MCU.

Before starting the FW update process, the authen-
tication has to be performed. It is managed in CCM
mode (Counter with CBC-MAC). A desktop PC is used
as the update terminal. The terminal must first gener-
ate session IV from random selected 16 bytes of service
RFID tag memory (SNO). The secret key is stored at
device flash memory and it is known by the terminal.
The following calculation of protected checksum (MIC)
needs session IV and secret key as inputs. The host
then sends authentication frame to the device, Fig. 4.

Authentication is valid only when device re-
calculated MIC is equal to MIC sent in authentication
frame. The device knows the secret key; the only thing
it does not know is session key, but via SNO it can
generate it. To do so, the device must "see" the RFID
service tag to read from its memory bank. The device
responses to authentication request frame with defined
error code chart, where the value of 0 means valid ac-
cess, Fig. 5.

6 1 16 16 2

Header Subcmd SNO MIC Tail

Packet ID,
size, cmd

BOOT_AUTH
Selected
Number Order

Protected
checksum

CRC16

Fig. 4: Authentication request packet.

6 1 1 2

Header Subcmd Result Tail

Packet ID,
size, cmd

Bootloader
subcmd

Command
result

CRC16

Fig. 5: Data response packet.

Image of the firmware is encrypted in CBC mode.
The same mechanism for creation of session IV from

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 629

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

SNO as in authentication is used. The secret key here
is different then the key used for authentication, i.e. 2
different keys in MCU flash memory are stored. The
image is separated to frames and is sent to the de-
vice by packets, where size of frame is limited to 1024
bytes. For example, in case of full packet usage and
size 216064 bytes of image, 211 packets are sent to the
device, Fig. 6.

6 1 0 - 1024 2

Header Subcmd Payload Tail

Packet ID,
size, cmd

BOOT_FILL
Encrypted FW image
segment

CRC16

Fig. 6: Data frame with encrypted FW segment.

There is no other memory space to store versions of
FW as a backup in the older version of bootloader, now
external 32 Mbit SPI flash memory is used, managed
to 5 blocks Fig. 7. First four blocks have a size of
400 kB, it is sufficient space for encrypted image which
has currently 211 kB, except last one. The last block of
memory is spared for storing device settings variables,
such as network setup and antenna tuning results.

Factory
FW

Last
FW

Actual
FW

Temp
space

Other
space

0 1200800400 16000

Fig. 7: Partitioning of External Flash memory.

The first block is an area where factory FW image
is stored. This is the backup plan of last resort.

The second block is reserved as current running im-
age backup, it is last known updated firmware image.
Factory default devices have this area empty.

The third block is an operation area for uploading
encrypted image of FW. Ongoing update process fills
this area with encrypted segments of FW image.

After successful filling this area, hash function is ap-
plied to entire stored image in order to check data in-
tegrity (the MD5 algorithm is used). Hash is calculated
at both transfer sides, terminal sends the hash result
and comparison is done at the device side. If calculated
hash is not corresponding, this third block is erased and
entire update process must start over with authentica-
tion.

All backup images are stored encrypted. Figure 8
shows diagram of FW update process.

4. Measurements and Results

PC applications are modified in order to encrypt and
load the FW image file onto device with authentication,
Fig. 9 and Fig. 10. Checksum calculation, message au-
thentication and extended encryption are added. All

Flash start

Authentication
ok?

NO

YES

Save NFI to TEMP

NFI
HASH
ok?

Decrypt NFI
ok?

NO

NO

YES

YES

Delete TEMP

Load NFI to MCU

Is NFI
running?

NO

YES

Load Actual FW
from FLASH

Move
Actual FW to Last FW,

NFI to Actual FW End

Status report

Fig. 8: Firmware update process diagram.

Fig. 9: A PC application to encrypt the firmware image file.

Fig. 10: A PC application to flash the device with a new
firmware image file.

programming is written in C and is portable to a mi-
crocontroller.

We compared the RAM and flash memory utilization
of the bootloader with authentication against previous

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 630

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

versions, Fig. 11. Now the bootloader occupies 52.7 kB
of flash memory from the reserved area of 100 kB.
Thanks to the code reduction of previous bootloader
version the difference is only 3 kB of flash space.

Fig. 11: Flash memory utilisation by bootloader type.

RAM usage is also optimized, Fig. 12, it is now
smaller with authentication than before. We managed
to reduce 0.66 kB of RAM space while adding authen-
tication algorithm.

Fig. 12: RAM memory utilization by bootloader type.

The time of new update methods is measured,
Fig. 13. All shown times are update times starting
from the bootloader. Time needed to switch to the
bootloader is approximately 2.5 seconds, but is not
included in the graph. Time to update device with
encrypted image file and authentication is 13350 ms,
compared to previous version of the bootloader with
no authentication, the difference is 3572 ms.

This time value includes authentication, save NFI to
external flash memory, hash calculation and compari-
son, NFI decryption, NFI load to MCU, backup and
reset, as shown in Fig. 8.

Fig. 13: Update time by encryption access to device.

Time of authentication, with wrong key is 25 ms
and with the right key 100 ms, it is negligible values in
comparison with update time of 13350 ms.

5. Conclusion

The paper describes a software implementation of a
secure firmware update solution with authentication in
an IoT context.

We integrated to existing device, i.e. UHF RFID
reader, the authentication feature. Together with AES-
CBC encryption we added CCM-based authentication.
To avoid an asymmetric encryption and certification,
we come up with the RFID service tag; it randomly
creates initialization vector as input to authentication
and encryption. Only the tag owner is able to update
device by certified NFI. Secret key storage is left un-
changed compare to previous version of the bootloader.
Keys are stored in protected area of MCU; it is the lim-
itation of hardware.

The measurements show requirements for MCU:
52.7 kB of flash memory and 9.3 kB of RAM, which
is still within our limits. Update speed is 27 % slower
with a new version of the bootloader, but it is not so
critical given a less frequent rhythm of NFI release. In
future, we would like to experiment with CryptoAu-
thentication devices, because we like the idea of secu-
rity in one IC chip. Furthermore, we would like to fo-
cus on the comparison with other methods, in terms of
CPU time, energy consumption, memory requirements
and process errors.

Acknowledgment

This work was supported by Eureka grant "U-
health: Auto-ID technology and the Internet of
Things to enhance the quality of health services",
Eureka ID: 11 158, by TA CR grant "The Multi-
channel Communication Platform for the Internet of
Things (IoT)" TH02010568 and CTU internal grant
"Security in Internet of Things and Industry 4.0"
SGS16/159/OHK3/2T/13.

References

[1] Gartner Says 8.4 Billion Connected "Things" Will
Be in Use in 2017, Up 31 Percent From 2016.
In: Gartner [online]. 2017. Available at: http://
www.gartner.com/newsroom/id/3598917.

[2] KVARDA, L., P. HNYK, L. VOJTECH,
Z. LOKAJ, M. NERUDA and T. ZITTA. Software

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 631

http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 4 | 2017 | SPECIAL ISSUE

implementation of secure firmware update in IOT
concept. Advances in Electrical and Electronic
Engineering. 2016, vol. 14, no. 4, pp. 389–396.
ISSN 1804-3119. DOI: 10.15598/aeee.v14i4.1858.

[3] PINGALE, P., K. AMRUTKAR and S. KULKA-
RNI. Design aspects for upgrading firmware of a
resource constrained device in the field. In: Inter-
national Conference on Recent Trends in Electron-
ics, Information and Communication Technology.
Bangalore: IEEE, 2016, pp. 903–907. ISBN 978-
1-5090-0774-5. DOI: 10.1109/rteict.2016.7807959.

[4] Internet of Things (IoT) Security and
Privacy Best Practices. In: IEEE Inter-
net Initiative [online]. 2017. Available at:
http://internetinitiative.ieee.org/
images/files/resources/white_papers/
internet_of_things_feb2017.pdf.

[5] KOLIAS, C., G. KAMBOURAKIS, A. STAVROU
and J. VOAS. DDoS in the IoT: Mirai and Other
Botnets. Computer. 2017, vol. 50, iss. 7, pp. 80–84.
ISSN 0018-9162. DOI: 10.1109/MC.2017.201.

[6] STANCIK, P. At least 15 percent of home
routers are unsecured. In: welivesecu-
rity [online]. 2016. Available at: https:
//www.welivesecurity.com/2016/10/19/
least-15-home-routers-unsecure/.

[7] CHEN, C.-L., T.-T. YANG, C.-L. FAN and K.-
H. WANG. A secure and with a low cost updated
information system in VANET. In: International
Conference on Applied System Innovation. Oki-
nawa: IEEE, 2016, pp. 1–5. ISBN 978-1-4673-
9888-6. DOI: 10.1109/ICASI.2016.7539884.

[8] MANSOR, H., K. MARKANTONAKIS,
R. N. AKRAM and K. MAYES. Don’t Brick
Your Car: Firmware Confidentiality and Rollback
for Vehicles. In: 0th International Conference on
Availability, Reliability and Security. Toulouse:
IEEE, 2015, pp. 139–148. ISBN 978-1-4673-6590-
1. DOI: 10.1109/ARES.2015.58.

[9] HUTH, C., P. DUPLYS and T. GUNEYSU. Se-
cure software update and IP protection for un-
trusted devices in the Internet of Things via physi-
cally unclonable functions. In: International Con-
ference on Pervasive Computing and Communi-
cation Workshops. Sydney: IEEE, 2016, pp. 1–6.
ISBN 978-1-5090-1941-0. DOI: 10.1109/PER-
COMW.2016.7457156.

[10] POULTER, A. J., S. J. JOHNSTON and
S. J. COX. SRUP: The secure remote update

protocol. In: 3rd World Forum on Inter-
net of Things. Reston: IEEE, 2016, pp. 42–
47. ISBN 978-1-5090-4130-5. DOI: 10.1109/WF-
IoT.2016.7845397.

[11] RISALAT, N. A., T. HASAN, S. HOSSAIN
and M. RAHMAN. Advanced real time RFID
mutual authentication protocol using dynam-
ically updated secret value through encryp-
tion and decryption process. In: International
Conference on Electrical, Computer and Com-
munication Engineering. Cox’s Bazar: IEEE,
2017, pp. 788–793. ISBN 978-1-5090-5627-9.
DOI: 10.1109/ECACE.2017.7913010.

[12] GUILLEN, O. M., D. SCHMIDT and G. SIGL.
Practical evaluation of code injection in encrypted
firmware updates. In: Design, Automation & Test
in Europe Conference and Exhibition. Dresden:
IEEE, 2016, pp. 325–330. ISBN 978-3-9815-3707-
9.

About Authors

Lukas KVARDA is a Ph.D. student of a study
program at Telecommunication Engineering at the
Czech Technical University in Prague, Czech Republic.
His research interests include HW and SW design,
RFID technology and cryptography.

Pavel HNYK is a Ph.D. student of a study
program at Telecommunication Engineering at the
Czech Technical University in Prague, Czech Republic.
His research interests include HW and SW design,
RFID technology and cryptography.

Lukas VOJTECH received M.Sc. and Ph.D.
at Telecommunication Engineering at the Czech
Technical University in Prague, Czech Republic in
2003 and 2010. He has been actively involved in
several national and international projects. He is
a leader of RFID laboratory at the Czech Technical
University in Prague since 2010. His research interests
are hardware prototyping and measurement especially
in the of RFID technology, textile antenna design and
localization.

Marek NERUDA received the M.Sc. and Ph.D. de-
gree in electrical engineering from the Czech Technical
University in Prague, Faculty of Electrical Engineer-
ing, Czech Republic in 2007 and in 2014, respectively.
His research interests include RFID technology and
electrically conductive textile materials.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 632

http://advances.utc.sk/index.php/AEEE/article/view/1858
http://ieeexplore.ieee.org/document/7807959
http://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
http://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
http://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
http://ieeexplore.ieee.org/document/7971869
https://www.welivesecurity.com/2016/10/19/least-15-home-routers-unsecure/
https://www.welivesecurity.com/2016/10/19/least-15-home-routers-unsecure/
https://www.welivesecurity.com/2016/10/19/least-15-home-routers-unsecure/
http://ieeexplore.ieee.org/document/7539884
http://ieeexplore.ieee.org/document/7299907
http://ieeexplore.ieee.org/document/7457156
http://ieeexplore.ieee.org/document/7457156
http://ieeexplore.ieee.org/document/7845397
http://ieeexplore.ieee.org/document/7845397
http://ieeexplore.ieee.org/document/7913010

	Introduction
	Today Update Secure Solutions
	Implementation Details
	AutoEPCIS UHF RFID Reader
	Previous Bootloader
	Redesigned Bootloader

	Measurements and Results
	Conclusion

