CONDITIONAL MEASURES ON MV-ALGEBRAS

Martin Kalina, Oľga Nánásiová

Dept. of Mathematic, Slovak Univ. of Technology Radlinského 11, 813 68 Bratislava, Slovakia kalina@math.sk, olga@math.sk

Abstract In recent years many papers have been written generalizing some theorems, known from the Kolmogorovian probability theory, to MV-algebras. To achieve such results, so-called product MV-algebras were introduced and, using the product, the joint probability distribution was defined. In this paper we present an approach how to define the joint distributions on MV-algebras which are not necessarily closed under product. First we construct conditional measures on a given MV-algebra. And using these conditional measures we define the joint probability distributions.

1. PRELIMINARIES

Definition 1.1. An MV-algebra is 5-tuple $(M, \oplus, *, \emptyset, 1)$ such that (M, \oplus, \emptyset) is an Abelian monoid and moreover

- $\bullet \qquad x^{**} = x$
- $\emptyset^* = 1$
- $x \oplus 1 = 1$
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$

Moreover for all $x, y \in M$ we can define

$$x \otimes y = (x^* \oplus y^*)^*$$
$$x \wedge y = (x \oplus y^*) \otimes y$$
$$x \vee y = (x \otimes y^*) \oplus y$$

and then $(M, \vee, \wedge, \emptyset, 1)$ is a bounded distributive lattice.

Example 1.1. ([2], [13]) Denote (Ω, \Im) a measurable space and μ some normed measure on that space. Then if we put M a system of [0,1]-valued \Im -measurable functions, closed under the following operations

$$f \oplus g(x) = \min(1, f(x) + g(x))$$

$$f \otimes g(x) = \max(0, f(x) + g(x) - 1)$$

$$f^*(x) = 1 - f(x),$$

and such that $0 \in M$, then M is an MV-algebra.

In this paper we will deal just with the MV-algebra M from Example 1.1. Denote $v(f) = \int f d\mu$, then v is an additive measure on M, i.e.

$$v(f \oplus g) = v(f) + v(g)$$
(1)
if $f \le (1-g)$

Definition 1.2. Events $f, g \in M$ will be called ν - orthogonal (for short just orthogonal) if $\nu(f \land g) = 0$.

2. CONSTRUCTION OF CONDITIONAL MEASURES ON MV-ALGEBRAS

Definition 2.1. For any $g \in M$ such that $\nu(g) > 0$ we say that $\gamma(|g|)$ is a conditional measure if and only if $\gamma(|g|)$ and $\gamma(|g^*|)$ are non-negative functions on M, bounded from above by 1, such that

A.
$$v(f) = v(g)\gamma(f|g) + v(g^*)\gamma(f|g^*)$$
, for any $f \in M$

B. $\gamma(f|h) = 0$, for all $f,h \in M$, which are orthogonal to each other

Definition 2.1. immediately implies the following

Lemma 2.1. For any $g \in M$ such that v(g) > 0 there holds $\gamma(1|g) = 1$

Definition 2.2. Denote T the system of all transformations $\tau: M \to [0,1]^{\Omega}$ such that for each $f \in M$

- 1. τ is \Im -measurable
- $2. \quad \int f \, d\mu = \int \tau(f) \, d\mu$
- 3. for any $x \in \Omega$ $f(x) = 0 \Leftrightarrow \tau(f)(x) = 0$.

Theorem 2.2. Let $\tau_2 \in T$ be such that for any $g \in M$ $\tau_2(g^*) = 1 - \tau_2(g)$ and $\tau_1 \in T$ be an arbitrary transformation. Define for any $f, g \notin M$

$$\gamma(f|g) = \begin{cases}
0 & \nu(g) = 0 \\
\nu(f) & \nu(g) = 1
\end{cases} \\
\frac{\int \tau_1(f) \tau_2(g) d\mu}{\int \tau_2(g) d\mu} & 0 < \nu(g) < 1
\end{cases} \tag{2}$$

Then for any $g \in M$ such that $\nu(g) > 0$, $\gamma(|g|)$ is a conditional measure.

Throughout this paper we will always denote by $\gamma(f|g)$ the measure given by Formula (2).

Definition 2.3. We will say that event f is independent of g with respect to a conditional measure γ if and only if $v(f) = \gamma(f|g)$.

In the sequel γ will always denote the conditional measure defined by Formula (2) from Theorem 2.2.

The independence of event f of g does not imply the independence of the event g of the event f. This non-symetric relation of independence allows us to distinguish between a cause and its effects. Similar results concerning the ortho-modular lattices have been achieved also by O. Nánásiová in [5]-[8].

Once having defined for any pair f,g of elements of the MV-algebra M the measure $\gamma(f|g)$, which is the conditional measure if $\nu(g)>0$, we can define also the two-dimensional joint distribution on $M\times M$ - the measure (probability) of occurence of this pair f,g. This, in fact represents the interaction of f and g. And the interaction can be different if we change the order.

Definition 2.4. The measure of interaction of a pair $f, g \in M$ will be denoted by p(f, g) and defined as $p(f, g) = \gamma(f|g)\gamma(g|1)$.

If γ is defined as in Theorem 2.1 we get $p(f,g) = \int_{\Omega} \tau_1(f) \tau_2(g) d\mu \text{ where } \tau_1 \text{ and } \tau_2 \text{ are given}$

transformations T such that $\tau_2(g^*) = 1 - \tau_2(g)$.

Theorem 2.3. Let p be a measure of interaction on the MV-algebra M and f, g be any elements of M. Then p(f,1) = p(1,f) = v(f)

p(f,g) = p(g,f) = 0, if f and g are ν -orthogonal $p(f,g) \le \min(\nu(f),\nu(g))$, particularly $p(f,f) \le \nu(f)$

the variables of p do not commute, i.e. in general $p(f,g) \neq p(g,f)$.

Example 2.1. Assume that $\Omega = [0,1]$ and μ is the Lebesgue measure. For any element $f \in M$ put $\tau_2(f) = f$ and the transformation τ_1 will be defined by the following

$$\tau_1(f)(x) = \begin{cases} 1 & f(x) = 1 \\ 0 & f(x) = 0 \end{cases}$$

$$\tau_1(f)(x) = \begin{cases} \int_A f(x) d\mu & \text{otherwise, where} \\ \frac{A}{\mu(A)} & A = \{x; 0 < f(x) < 1\}. \end{cases}$$

Let f(x) = x and $g(x) = \max(0, x - 0.5)$. Then

Then

$$p(f,g) = \int_{0}^{1} 0.5gd\mu = 0.5 \int_{0.5}^{1} (0.5 - x)d\mu = \frac{1}{16}.$$

$$p(g,f) = \int_{0.5}^{1} 0.25xd\mu = \frac{3}{32}$$

$$p(f,f) = \int_{0}^{1} 0.5xd\mu = \frac{3}{16}$$

$$p(g,g) = \int_{0.5}^{1} 0.25(x - 0.5)d\mu = \frac{1}{16}$$

3. SOME COMMENTS CONCERNING OBSERVABLES AND THEIR JOINT DISTRIBUTION

First we recall the definition of a tribe and of an observable.

Definition 3.1. An MV-algebra M will be called a tribe iff for any non-decreasing sequence of elements

$$\left\{f_i\right\}_{_{i=1}}^{\infty} \text{ there holds } \bigvee_{i=1}^{\infty} f_i = f \in \mathbf{M} \;.$$

From now on we will assume the MV-algebra to be a tribe.

Definition 3.2. An observable is a mappping λ from Borel sets B(R) into the MV-algebra M such that $\lambda(R) = 1$.

If $A \cap B = \emptyset$, then $\lambda(A \cup B) = \lambda(A) \oplus \lambda(B)$ and $\lambda(A) \le \lambda(B^*)$.

If A_n A, then $\lambda(A_n)$ $\lambda(A)$.

In a natural way for each observable λ we can define also its cummulative distributive function F_{λ} and its expectation $E(\lambda)$ by $F_{\lambda}(x) = \nu(\lambda((-\infty, x]))$

$$E(\lambda) = \int_{-\infty}^{\infty} x F_{\lambda}(dx) .$$

And, making a parallel to the measure of interaction p from Definition 2.4, we can define the joint probability distribution $P_{\lambda\kappa}$ for any pair of observables λ and κ by

$$P_{\lambda\kappa}(A,B) = p(\lambda(A),\kappa(B))$$

where A,B are Borel sets. This can be interpreted as the measure of interaction of the observables λ and κ . The basic properties of $P_{\lambda\kappa}$ can be just rewritten from Theorem 2.2.

It is also possible to define the mean interaction of the observables λ and κ , denoted by $C(\lambda, \kappa)$, as follows

$$C(\lambda, \kappa) = \int_{-\infty}^{\infty} (x - E(\lambda))(x - E(\kappa))dF_{\lambda, \kappa}(x, x)$$

where $F_{\lambda,\kappa}(x,y) = P_{\lambda,\kappa}((-\infty,x],(-\infty,y])$ is the joint cummulative probability distribution. The investigation of the joint probability distributions (the interactions) of observables and of the corresponding mean interactions will be the topic of a next paper. Here we would like to point just to one very important property of the introduced notions, namely to the non-commutativity of the variables (observables) in the measure of interaction $F_{\lambda,\kappa}$ and in the mean interaction $C(\lambda,\kappa)$.

REFERENCES

- [1] C.C. CHANG: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490
- [2] C.C. CHANG: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
- [3] F. Chovanec: States and observables on MV-algebras. Tatra Mountains Math. Publ. 3 (1993), 55 -63.
- [4] M. Jurečková, B. Riečan, Weak law of large numbers for weak observables in MV algebras, Tatra Mountains Math. Publ. 12 (1997), 221 -- 228.
- [5] O. Nánásiová: A note to independent events on quantum logic. Busefal, 76, (1998), 53-57.
- [6] O. Nánásiová: Principle conditioning. Sent to Int. Jour. of Theor. Phys. (2000)
- [7] O. Nánásiová, A. Yu. Khrennikov: Observables on a quantum logic. Foundations of Probability an Physics -2, Conf. Proc. 005, ICMM, Wajxo, Sweeden, (2002), 417-431.

- [8] O. Nánásiová: Map for simultaneusous measurements for a quantum logic. Int. Jour. Of Theor. Phys. 42, (2003), 1998-1902.
- [9] B. Riečan: On the sum of observables in MV algebras of fuzzy sets. Tatra Mountains Math. Publ. 14, (1998), 225- 232.
- [10]B. Riečan: On the strong law of large numbers for weak observables in MV algebras. Tatra Mountains Math. Publ. 15 (1998), 13-21.
- [11]B. Riečan: Weak observables in MV algebras. Internat. J Theoret. Phys. 37 (1998), 183 189.
- [12] B. Riečan: On the product MV algebras. Tatra Mountains Math. Publ. 16 (1999), 143 149.
- [13] B. Riečan, T. Neubrun: Integral, Measure, and Ordering. Kluwer Academic Publishers, Ister Science, Bratislava, (1997).