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Abstract. The flow of harmonic current encountered
in nowadays electrical installations causes numerous
undesirable issues to the power grid. The most detri-
mental consequence is the premature aging or even fail-
ure of the in-service power distribution transformers
from industrial facilities (originally designed to cope
with the linear loads). Accordingly, the paper quan-
titatively examines the major thermal operating pa-
rameters of these transformers and predicts their life-
time expectancy under a certain harmonic load spec-
trum. The developed computation principle is based
on the international standard recommendations and
only demands the load current harmonic content (mea-
sured with a power quality analyzer) and the trans-
former rated data. The study is also carried out on
a 250 kVA oil-type three-phase power distribution
transformer from a pumping station.
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1. Introduction

The main culprits of the poor power quality in terms of
distorted currents encountered in the modern electric
installations are the nonlinear loads; electric equipment
(industrial or domestic) with built-in electronic compo-
nents that enable their control and energy efficient op-
eration [1], [2], [3], [4] and [5]. On the other hand,
due to the generated high order harmonic currents,
they cause numerous instantaneous and long terms
detrimental consequences on the installation compo-
nents: circuit-breakers untimely tripping, overheating,
mechanical stress, abnormal vibrations and acoustic

noise of the electric machinery. The power distribu-
tion transformers from the in-service industrial plants
were originally designed to serve linear loads and their
lifespan was predicted to a few decades (with regu-
lar maintenance). The nowadays increased prevalence
of the nonlinear loads additionally stresses the supply
transformers by rising their intrinsic losses and con-
sequently causing the machines premature aging or
even failure [6], [7], [8], [9], [10], [11], [12] and [13].
The paper quantitatively examines the aging parame-
ters of a power distribution transformer operating un-
der balance and nonlinear load conditions (the typical
industrial load state) [14], [15] and [16]. The trans-
former advanced thermal models [6] and [8] are often
inefficient for in-situ investigation due to the numer-
ous constructive and material required data. Thus,
with the transformer rated data and the current har-
monic spectrum, at the machine low-voltage side, the
main electric and thermal operating quantities are con-
tinuously evaluated. Regarding also the international
standards recommendations [17] and [18], the follow-
ing transformer parameters are computed for different
load factors: hot–spot temperature, the insulation rel-
ative aging acceleration factor, the percentage loss of
life and lifetime expectancy. The harmonic load cur-
rents aging impact on the transformers is exemplified
on a 250 kVA oil-type three-phase power distribution
transformer that feeds an industrial facility (pumping
station).

2. Transformer Aging Due to
the Harmonic Currents

The aging process of any electrical equipment from an
installation occurs, during its operation, mainly due to
the deterioration of the equipment insulation materials.
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This complex process is influenced by numerous fac-
tors such the mechanical stress or chemical aggression,
moisture or oxygen content and, above all, the working
temperature of the appliance [19], [20] and [21]. The
latter is the most dominant parameter that ultimately
determines the device lifespan. Since, in most appli-
ances, the temperature is not uniformly distributed,
the part that is operating at the highest temperature
will commonly experience the greatest deterioration.
Hence, in aging studies, it is usual to consider the aging
effects produced by the highest (hot-spot) temperature
[18].

2.1. Transformer Hot-Spot
Temperature Evaluation

The expected lifetime of a distribution transformer is
also very responsive to the machine hot-spot temper-
ature. The harmonic currents of the supplied nonlin-
ear loads cause supplementary losses within the trans-
former and may determine hot-spot temperatures that
exceed the rated (reference) value. Therefore, a rapid
degradation of the transformer insulation materials is
expected followed by the reduction of transformer ini-
tial designed lifetime. For liquid-filled power distri-
bution transformers, the windings hot-spot tempera-
ture θH is a function of ambient temperature θA, the
oil temperature rise in respect to ambient temperature
θTO, and the conductor hot-spot temperature rise rel-
ative to oil temperature θg [17]:

θH = θA + θTO + θg. (1)

The last two terms involved in the above relation
could be evaluated considering the machine rated data
and losses distribution inside the transformer (ohmic
losses PDC , load losses PLL, eddy current losses PEC ,
other stray losses POSL and no load PNL losses) [17]:

θTO = θTO−R

(
PLL + PNL

PLL−R + PNL

)0.8

,

θg = θg−R

(
PDC + PEC

PDC−R + PEC−R

)0.8

,

(2)

where θTO−R is the rated oil temperature rise with
respect to the ambient temperature, θg−R is the rated
conductor temperature rise relative to oil temperature
and PDC−R, PLL−R, PEC−R are the rated ohmic, load
and eddy current losses respectively.

The operating transformer losses could be expressed
in term of the load factor β (computed as the root
mean square current I relative to transformer rated
sinusoidal current IR2 at the low-voltage winding) and
two power quality parameters that accounts the load
current harmonic spectrum: harmonic loss factor (FHL

or K) and harmonic loss factor for other stray losses
(FHL−STR) [13], [15], [16] and [17]:

PLL = PDC + PEC + POSL,

PDC = β2PDC−R,

PEC = β2PEC−RFHL,

POSL = β2POSL−RFHL−STR,

with:

FHL =
1

I2

N∑
k=0

k2I2k ,

FHL−STR =
1

I2

N∑
k=0

k0.8I2k ,

β =
S

SR

∼=
I

IR2
, I2 =

N∑
k=0

I2k ,

(3)

where Ik is the effective value of the k current harmonic
order, N is the highest accounted harmonic order (in
our computations N = 50), S represents the apparent
power and SR is the transformer rated power under
normal (sinusoidal) condition.

The rated winding eddy current losses PEC−R and
rated other stray losses POSL−R are conservatively es-
timated in accordance with the international standard
recommendations [17]:

PEC−R = 0.33 (PLL−R − PDC−R),

POSL−R = 0.67 (PLL−R − PDC−R) .
(4)

Supplementary, the transformer rated ohmic losses
PDC−R are computed on the basis of primary and sec-
ondary rated currents (IR1, IR2) and the windings DC
ohmic resistances indicated by the manufacturer (R1,
R2), respectively:

PDC−R = 3(R1I
2
R1 +R2I

2
R2). (5)

Since in the actual industrial power distribution sys-
tems the supply voltages waveforms are balanced and
sinusoidal, the transformer no-load losses PNL are in-
variable in respect to the current harmonic spectrum.

2.2. The Transformer Maximum
Load Factor and Operating
Capacity

In order to derive the admissible load factor βmax and
its corresponding maximum permissible nonsinusoidal
current IMPC (effective value), one has to constrict the
transformer operating hot-spot temperature θH (under
any harmonic current conditions) to equal its initial
reference value θHref (assumed for pure linear rated

c© 2018 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 93



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 16 | NUMBER: 1 | 2018 | MARCH

load).

θA + θTO−R

(
PLLmax + PNL

PLL−R + PNL

)0.8

+

+θg−R

(
PDC max + PEC max

PDC−R + PEC−R

)0.8

= θHref ,

with:
PLLmax = PDC max + PEC max + POSLmax,

PDC max = β2
maxPDC−R,

PEC max = β2
maxPEC−RFHL,

POSLmax = β2
maxPOSL−RFHL−STR.

(6)

The equation above is numerically solved (regarding
the ambient temperature), and consequently, the trans-
former Reduction in Apparent Power Rating (RAPR)
and its maximal operating capacity SM are estimated:

RAPR =
IR2 − IMPC

IR2
· 100 % =

= [1 − βmax] · 100 %,

SM = βmax · SR,

βmax =
IMPC

IR2
.

(7)

To consider the most unfavorable (worst case) ther-
mal operating conditions of the transformer, the maxi-
mum of rated windings eddy current losses is assumed.
This can be appreciated, in per unites system relative
to ohmic rated losses, according to [17]:

PEC−R(p.u.)max =
2.4PEC−R

3R2I2R2

. (8)

2.3. Transformer Lifetime
Estimation

The power distribution transformer lifespan is directly
associated with the windings conductors’ insulation
life. Consequently, the actual standards [18] provide
the rate at which the transformer insulation aging is
accelerated compared with the aging rate at a reference
hot-spot temperature θHref by a factor called aging ac-
celeration factor FAA. Its expression mainly depends
on the transformer operating hot-spot temperature θH :

FAA = exp

(
B

θHref + 273
− B

θH + 273

)
, (9)

where B is an insulation type material constant [18].
It is also important to reveal that if the relative ag-
ing acceleration factor has less than unity values, the
transformers initial lifetime expectancy Normal Insu-
lation Life (NIL) is preserved.

Considering the above-mentioned assumptions, the
percent loss of life (%LOL) of the transformer insula-

tion can be evaluated [18], [19], [20] and [21]:

%LOL =
FAA

NIL
t · 100. (10)

where t is a certain period (indicated in years).

Practically, the machine lifetime is regarded as its in-
sulation lifespan. Hence, the transformer Per Unit Life
Life(pu) (relative to its normal insulation lifetime),
and the machine Remaining Life RL can be expressed
in terms of the operating transformer hot-spot tem-
perature θH and the aging acceleration factor FAA, re-
spectively [18]:

Life(pu) = A exp

(
B

θH + 273

)
,

RL =
NIL

FAA
= Life(pu)NIL,

(11)

where A is a material constant, estimated also based on
the Normal Insulation Lifetime (NIL). The constant
B is the same as the one already indicated in [9].

For the power distribution transformers found in
most of the in-service examined electric installations,
the normal insulation life is considered 20 years. Ac-
cording to the manufactures indications, these trans-
formers have an average winding temperature rise rel-
ative to ambient temperature of 55 ◦C and common
(not thermally upgraded) conductor insulation type
[18]. This corresponds to a reference (rated) hot spot
temperature of θHref = 95 ◦C and material constants
values: A = 2 · 10−18 and B = 15, 000 [18], [19], [20]
and [21].

The operating parameters computation procedure
presented here allows an in-situ, fast and less intrusive
investigation method for the numerous, still working,
power distribution transformers subjected to distorted
currents from various industrial installations.

2.4. Transformer Thermal Aging
Parameters Prediction-Case
Study

The transformer thermal aging evaluation principle is
illustrated on an oil-type 250 kVA power distribution
unit that supplies nonlinear and balanced loads from an
industrial pump facility - Fig. 1. The transformer rated
characteristics, provided by the manufacturer, are illus-
trated in the Appendix. The main electric quantities of
the machine are continuously measured and monitored
at the transformer secondary part (low-voltage side)
with a professional power quality analyzer [22]. The
latter also transfers all the acquired data to a portable
computer, which due to a developed software package
(elaborated in accordance with the principle exposed
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Fig. 1: The investigated three-phase power distribution transformer supplying single and three-phase nonlinear loads of an indus-
trial pump facility.

in the previous section), predicts the operating trans-
former hot-spot temperature and its corresponding re-
maining life. Additionally, all the losses inside the ma-
chine, their division and the derating parameters are
also determined.

For the investigated nonlinear load, the most rele-
vant power quality parameters were constantly mea-
sured and acquired. Thus, the transformer currents
waveforms and their harmonic spectrum are shown in
Fig. 3 and Fig. 4, respectively. Figure 5 reveals the
currents absolute values at the fundamental frequency,
the phase displacement of the line voltages relative to
the currents and the unbalance level. The phase cur-
rents root mean square and their harmonic parameters
values are indicated in Fig. 5, while Fig. 6 and Fig. 7
show the load (active, reactive and apparent) powers
and power factor. All the computed operating parame-
ters (electrical and thermal) for the investigated trans-
former are presented in Tab. 1 for two different load
factors. The first one corresponds to the measured
transformer harmonic state: β1 = 0.377 and the second
one: β2 = 0.754 assumes a double load with the same
harmonic current spectrum. Supplementary, for com-
parison reasons, the parameters for the rated (pure si-
nusoidal state) β = 1 are also indicated in Tab. 1. Con-
sequently, the first load factor generates within the ma-
chine the hot-spot temperature θH1 = 66.238 ◦C that
is below its reference value (θHref = 95 ◦C) and de-
termines an ageing acceleration factor FAA1 = 0.0315.
This subunit value indicates that the transformer pre-
serves its normal insulation life (NIL = 20 years) - the
percent loss of life value per year is neglected.

Fig. 2: The transformer currents waveforms and their root
mean square values.

Fig. 3: The phase currents harmonic spectrum.
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Tab. 1: Electrical and thermal operating parameters of the investigated transformer for different load factors.

A) Temperatures within the transformer and aging parameters

Thermal aging
parameters of

the transformer

Rated
linear
load

Various nonlinear loads
,(distorted currents),
Load factor β = I/I2R

β = 1 β1 = 0.377 β2 = 0.377
The top oil

temperature rise in
respect to ambient

temperature θTO (◦C)

55 27.560 65.437

The conductor hot
spot temperature
rise relative to oil

temperature θg (◦C)

5 3.677 11.147

The transformer
hottest spot winding
temperature θH (◦C)

95 66.238 111.585

Aging acceleration
factor FAA

1 0.0315 5.799

The percent Loss of
Life (%LOL) pro year - - 28.999

Remaining Life
RL (years) 20 20 3.474

B) Losses distribution within the transformer
Type of losses

in the transformer (W) β = 1 β1 = 0.377 β2 = 0.754

No load PNL 650 650 650
DC Ohmic PDC 2166.666 308.679 1234.717

Eddy current PEC 357.5 608.209 2432.838
Other stray POSL 725.833 191.241 764.9677

Total PT 3900 1758.130 5082.523
The nonlinear load harmonic

loss factor FHL or K 11.9416

The nonlinear load harmonic loss
factor for other stray losses FHL−STR

1.849

C) Transformer maximal acceptable operating parameters
Maximum load factor βmax = 0.646

Maximum permissible current IMCP = 233.250 (A)
Maximal operating capacity SM = 161.600 (kVA)

Reduction in apparent power rating RAPR = 35.359 (%)

Fig. 4: The currents absolute values at the fundamental fre-
quency, the phase displacement of the line voltages rel-
ative to the currents and the unbalance level.

The transformer behaves completely differently
when the load factor is doubled with the same cur-
rents harmonic content. Hence, for β2 = 0.754, the
main thermal operating parameters significantly ex-
ceeds their rated values: the hot–spot temperature be-

Fig. 5: The phase currents root mean square and their har-
monic parameters values.

comes θH2 = 111.585 ◦C and the new aging acceler-
ating factor reaches up to FAA2 = 5.799. Therefore,
the transformer remaining life suddenly drops down to
only RL2 = 3.474 years (the percent loss of life year
value is 28.99 %). All the above computations were
performed considering the rated temperatures of the
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Fig. 6: The active, reactive and apparent powers.

Fig. 7: The load power factor.

transformer shown in the Appendix and ambient tem-
perature θA = 30 ◦C.

The developed program also manages to adequately
predict and visualize the transformer operating param-
eters variation with different alterations of the non-
linear load features. Thus, the effect of load factor
changes on the hot-spot temperature, aging accelera-
tion factor and the machine remaining life are repre-
sented in Fig. 8(a), Fig. 8(b) (in semilogarithmic repre-
sentation) and Fig. 8(c) respectively. The maximal per-
missible load factor βmax = 0.646 and its corresponding
(rated) operating parameters: θHref = 95 ◦C, FAA = 1
and RL = NIL are also depicted in Fig. 8.

One can notice that for the measured load current
harmonic spectrum, the transformer could maintain
the initial insulation lifetime (NIL = 20 years) only
up to almost half of the rated capacity (βmax = 0.646).

3. Remarks and Conclusions

The electrical and thermal operating parameters of
the actual in-service power distribution transformers
that supply nonlinear loads were predicted and re-
viewed. Accordingly, the main transformer aging indi-
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Fig. 8: Transformer aging parameters dependency of the load
factor: (a) the hot-spot temperature, (b) aging accel-
eration factor in semilogarithmic representation and (c)
the transformer remaining life.
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cators (hot-spot temperature, aging acceleration factor
etc.) were continuously computed in accordance with
the measured current harmonic load spectrum and the
transformer rated data. The proposed computation
principle is based on the international standards rec-
ommendations and constraints the machine operating
hot-spot temperature to be under the rated (reference)
value, indicated by the manufacturer. Thus, all the de-
rating parameters (maximum permissible current, the
reduction in apparent power rating etc.) are also eval-
uated along with their dependency with the load factor
variation. This technique is to be easily implemented
in any general-purpose computing software and could
be further used as a low-cost and flexible on-site main-
tenance instrument of the transformer (especially as
the power quality data could be nowadays wirelessly
transferred to a mobile computation unit). To pre-
serve the transformer rated lifespan, some additional
on-site proactive maintenance measures are strongly
advised. Hence, thermographic inspection and vibra-
tion investigation on the main transformer construc-
tive part may be easily performed with the adequate
equipment (portable infrared camera and vibration an-
alyzer). The presented transformer aging computa-
tion procedure was systematically tested on many units
with different rated powers from various industrial fa-
cilities. This could avoid the machine overloading by
signaling the abnormal non-electric parameters. The
presented hot-spot computation principle could be im-
proved in terms of its accuracy and applicability in
at least three major directions: better evaluation of
the operating losses (by using high precision numerical
method), the consideration of the load unbalances (es-
pecially useful in domestic installations with numerous
single-phase loads) and finally by taking into account
also the voltage distortions (occurring when high non-
linear loads are supplied by systems with low short-
circuit power).
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Appendix A
The Analysed Transformer
Rated Data

• Rated power capacity SR = 250 kVA,

• Primary rated voltage UR1 = 20 kV,

• Secondary rated voltage UR1 = 0.4 kV,

• No load power losses PNL = 0.65 kW,

• Short circuit power losses PLL−R = 3.25 kW,

• No-load current i0 = 2.1 %,

• Short circuit voltage usc = 6 %,

• Per-phase DC resistance of primary winding
at 75 ◦C: R1 = 10.4 Ω,

• Per-phase DC resistance of secondary winding
at 5 ◦C: R2 = 0.00416 Ω,

• Ambient temperature θA = 30 ◦C,

• Top-oil-rise over ambient temperature under rated
conditions θTO−R = 50 ◦C,

• Winding rise over ambient temperature under
rated condition θw−R = 55 ◦C,

• Rated (reference) winding hot-spot temperature
θHref = 95 ◦C,

• Cooling type: Oil Natural Air Natural (ONAN),

• Vector group: Dyn05.
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