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Abstract. Innovative test methods for circuit break-
ers are constantly sought after to reduce maintenance
time and costs, yet still provide accurate assessment
of this critical substation equipment. This paper pro-
poses a novel method for response modelling of high
voltage SFg¢ circuit breakers, based on artificial neural
networks, to provide a means of assessing its condition.
The proposed method enables a timing response model
of the circuit breaker to be developed using trip com-
mand parameters. In this paper, an experimental setup
1s used to perform trip response testing of a three-phase
75 kV circuit breaker. The obtained data is then used to
train, validate and test a Bayesian reqularised artificial
neural network that can predict response times of the
breaker for a given set of trip command parameters.
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1. Introduction

Maintenance and reliability of power system equip-
ment have become increasingly important with grow-
ing electricity demand and ageing of system compo-
nents globally [I]. In particular, circuit breakers are
critical components of a power system performing pro-
tective and operational functions in the transmission
and distribution categories. Therefore, effective moni-
toring and assessment techniques for ensuring the reli-
ability of circuit breakers are important factors in the
maintenance of modern power systems [2]. Failures of
high voltage SF¢ circuit breakers have been studied ex-
tensively, and provide a means of modelling reliability
of this equipment thereby affording predictive mainte-
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nance measures. While model-based methods for as-
sessing circuit-breaker condition have been proposed
there are many drawbacks to these methods which are
discussed in this paper. A key drawback with exist-
ing model-based methods is the use of historical sta-
tistical data which only partially reflects the ageing
process but cannot accurately determine the actual cir-
cuit breaker condition [3]. Condition measurements are
better suited to assessment but these are only meaning-
ful when compared to an existing reference. However,
these references are also based on a model or historical
measurements. The variation in test conditions and
operating cycles of circuit breakers can render com-
parative methods inaccurate or invalid. This research
proposes a method for response modelling of high volt-
age circuit breakers. In this way, the response of the
breaker at a past healthy state can be compared to
its current state under the same test conditions. This
paper presents a method for developing the response
model, using an Artificial Neural Network (ANN), for
a high voltage SFg circuit breaker which can be used
to assess its condition.

2. Circuit Breaker Condition

Assessment

There are different modes of failure for electrical equip-
ment of a power system influenced by electrical, ther-
mal, mechanical and ambient stresses [4]. These fac-
tors, through different mechanisms, produce varying
intensity and progress of ageing change to the equip-
ment [5]. The same applies to circuit breakers where
complete failure may be defined as causing the lack of
one or more of its fundamental functions [6].

High-voltage circuit breakers are broadly classified
according to insulation type. SFg is the most common
type used, but it also has a significantly lower aver-
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age life than others, such as minimum oil and air-blast
breakers [7]. The majority of failures in SFg-type cir-
cuit breakers observed in the field are due to mechan-
ical problems followed by insulation problems [2] and

1.

A good indicator of circuit-breaker condition is its
switching time as it has been found to be influenced
by critical irregularities with the device to the extent
that relationships between such anomalies and the tim-
ing have been derived [§] and [9]. In []], a reference
timing is compared with the timing obtained after the
breaker exhibits unusual operation. Analysis of the dif-
ference between these timings provides a means of de-
tecting problems with the device. Although the modal-
ity employed by this method provides a useful means
of assessing circuit-breaker condition, the timings used
are compound and are vulnerable to variations in test
conditions. More specifically, variations in the input
signal/s to the device under test and environmental
conditions directly influence the response time thus af-
fecting the reference used by the method presented in
[8]. Furthermore, the additional complexities, expense
and inherent error of this methodology implore its aug-
mentation in order for practical implementation. The
proposed technique builds on the timing modality for
condition assessment and accounts for the variations in
test conditions and compound nature of circuit breaker
switching times. The modelling of circuit-breaker re-
sponse timing comprising these aforementioned com-
plexities is afforded through the use of ANN. ANN has
become more popular in the area of power engineer-
ing with applications in forecasting [10] and [1I] and
condition assessment problems [12].

Modern model-based circuit-breaker condition as-
sessment techniques are becoming more popular in
recent times. This is because model-based methods
typically can be used irrespective of the maintenance
strategy - i.e. timeor condition-based [5]. The proba-
bilistic methodology presented in [I3] is an example of
a model-based method which offers a means of quanti-
fying the effect of device maintenance for circuit break-
ers. This is achieved through the use of Bayesian up-
dating of predetermined performance indices based on
historical condition data. It should be highlighted that
once again time-based responses of the circuit breaker
are used as the key parameters for assessing condition
thereof. Although, the Bayesian approach presented
in [I3] is quite useful, there are the drawbacks of the
complexity involved with creating tolerance limits for
the performance indices as well as obtaining suitable
historical data. The end-of-life assessment of circuit
breakers is of great interest to utilities and there are
number of reliability model-based methods that have
been proposed [I]. However, the historical data used
with these types of models are prone to error result-

(©2018 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

ing from variations in operating cycles and conditions
of circuit breakers. The presented ANN-based method
overcomes these drawbacks as it does not require his-
torical data and embeds model complexity in the neu-
ral network. Moreover, it can be used in conjunction
with reliability model-based methods. The proposed
method provides a means of response modelling, there-
fore a comparative assessment of multiple circuit break-
ers under similar input conditions can be carried out
to ensure accuracy of a particular reliability model.

3. Methodology

3.1. Circuit Breaker Timing Tests

There are various types of timing tests that may be
performed on circuit breakers [§]. The timing test used
in this work is commonly referred to as a contact speed
timing test. This is a specialised test whereby a DC
current signal is directly injected into the trip coil of the
circuit breaker causing its main contacts to open. The
injected current and the response times of the breaker
are then recorded.

For this study, the contact speed timing test is per-
formed on a 72.5 kV three-phase SFg high voltage
circuit breakers. A Switch Analyser (SA10) is used
to perform the test in the experimental configuration
shown in Fig. [[] This device consists of 12 x 2 main
contact timing channels, 6 auxiliary contact channels,
3 analogue and 3 digital transducer inputs and serial
communication to an external computer. The circuit
breaker under test is connected such that the links to
the Switch Analyser and the test circuit earth loop are
established.

3.2. Response Modelling

The timing test essentially consists of an input to
the circuit-breaker system and an output or response.
The three main contact times constitute the circuit
breaker’s response in this case. This response can be
used as a reference in condition-based assessment as
previously described. However, since the response is
not only dependent on the circuit breaker’s condition
but also on the environmental conditions and variation
in the injected signature (input), a reference timing
alone will not suffice. Therefore, an actual response
model of the circuit breaker is preferred. ANN is used
to construct a response model that will capture the
condition of the circuit breaker under test for a spe-
cific input signature. This model will then be able to
output the main contact response times for other in-
put signatures making it possible to accurately moni-
tor deviation in response times, and hence condition, of
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Fig. 1: Experimental setup used for conducting circuit breaker timing tests.
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Fig. 2: Architecture of ANN with Bayesian regularised back-
propagation algorithm wused for creation of circuit
breaker response model.

training a neural network using test input signatures
and recorded main contact times. For the purpose of
the presented study, the neural network architecture
(shown in Fig. [2)) consists of 2 neurons in the input
layer, 10 neurons in the hidden layer and 3 neurons in
the output layer. The selection of 10 neurons in the
hidden layer came about through an iterative process
of seeking the best accuracy and optimal performance.
It was found that, for the presented dataset, a hid-
den layer with lower than 10 neurons yielded higher
error, and greater than 10 neurons did not yield any
improvement to the overall accuracy. The two inputs
parametrise the test current signal and the three out-
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put times correspond to the main contact timings of
each of the three poles. The two input parameters used
to characterise the input are the peak time (¢,.;) and
the peak value of the test DC current (I,,) injected into
the trip coil. The contact speed timing test is repeat-
edly performed with variation in the recorded injected
current signatures and corresponding main contact re-
sponse timings (outputs). The three response times
tra, trp and t.c are the trip response timings for each
of the three poles of the circuit breaker.

4. Results and Analysis

4.1. Experimental Results

Using the experimental configuration given in Fig. [I]
40 repetitions of the timing test are performed on the
SFg circuit breaker. Therefore, a set of 40 x 2 in-
put parameters and 40 x 3 output times are obtained.
Figure [3] shows three examples of DC current signals
injected into the trip coil during the first three timing
tests. The variations in peak times and peak values
of these input currents occur in practice during testing
which results in variations in response times.

4.2. Training, Validation and Testing

The Bayesian Regularised Back-propagation (BRP)
training algorithm was used rather than Levenberg-
Marquardt Back-propagation (LMB) or Resilient
Back-propagation (RB) algorithms. BRP uses adap-
tive weight minimisation when fitting data which is
particularly useful for small noisy datasets and is of-
ten used in power applications such as load forecasting
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Fig. 3: Samples of DC current signals as measured during re-
sponse timing tests of circuit breaker showing different
peak time and peak current parameters.
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Fig. 4: Performance plot.

[14] and [I5]. The 40 x 2 test signal parameters and
40 x 3 output times constituted the total dataset for
the study. A total of 30 samples were used for train-
ing, 4 for validation and 6 for testing. The best training
performance yielded a Mean Squared Error (MSE) of
0.30689 obtained at epoch 69. Figure [4] shows a graph
of the MSE as calculated after each epoch during test
and training. The distribution of the modelling error
according to each instance for the testing and train-
ing processes is given in Fig. []] The graph given in
Fig. |§| shows the fitting of the data instances (train-
ing, validation and test) during the construction of the
response model. A summary of the testing and val-
idation results for the ANN-based response model is
given in Tab. [I] The results for the LMB and RB al-
gorithms are also shown for the purpose of comparison
with the BRP algorithm.It should be highlighted that
although the MSFE is not as low relative to other ap-
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plications, it does serve the purpose of indicating, via
the experimental results, that the proposed method has
the potential for assessing the condition of high voltage
circuit breakers in practice.
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Fig. 5: Error histogram with 20 bins.
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Fig. 6: Linear regression result of response times fitting with
coefficient R—0.88313.

4.3. Discussion

An overview of the proposed response modelling
methodology is given in Fig. and the suggested
condition assessment process is given in Fig. In
this study, the BRP training algorithm enabled good
performance when using a total of 40 samples of in-
put and output parameters from the circuit breaker
response tests. However, depending on the test con-
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Tab. 1: Summary of ANN modelling results.

ar{;z;'li‘ltl}?il Process Samples | Mean Squared Error (MSE) | Regression Coefficient(R)

Training 30 3.06885-10~1 9.23055-10~ 1

BRP Validation 4 - -
Testing 6 1.06931-10~ 1 2.00826-10~ 1
Training 30 3.57976-10~ 1 9.15405-10~ 1

LMB Validation 4 5.44579-10~ 1 7.00173-10~ 1
Testing 6 1.51008-10 1 1.99622.10 "
Training 30 6.04194-10~ T 7.91846-10— 1

RB Validation 4 5.19850-10 T 9.28050-10 1
Testing 6 5.16244-10— 1 8.73002-10— 1
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(a) Circuit breaker response modelling.

Fig. 7: Flow diagrams.

ditions, the MSFE will differ. It is therefore recom-
mended that the circuit breaker response test should
be repeated during the response modelling process un-
til a suitably low MSFE is acquired. Following the cre-
ation of the response model, the healthy state of the
circuit breaker can then be compared to its current
state at the time during its life whether it is a part
of condition-based or interval-based maintenance. The
assessment of the circuit breaker’s condition is based
on a comparative analysis of the response times of the
response model (circuit breaker at healthy state) and
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(b) Circuit breaker condition assessment.

the current condition of the breaker. In this way, the
response times can now be compared using a suitable
technique to estimate how significant the difference, if
any, of the circuit breaker’s response times, are to its
healthy state’s responses. In this work, the model is
obtained while the switch analyzer is picking up the
performance of the breaker. In the presented experi-
mental tests, the analyser commands the breaker to be
opened in offline mode. Hence, the switching perfor-
mance may be different under high voltage stress - i.e.
under an in-situ test scenario. Additionally, the inter-
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rupter performance may not only be affected by the
amplitude of the rise time of the DC current source
injected but also other characteristics arising from the
electric tension. The benefit of the presented method
is that response modelling can be carried out under of-
fline or online provided that it is done consistently -
i.e. if the model construction is done using offline test
results then condition assessment must also be done in
offline mode and vice versa.

5. Conclusion

The condition of high voltage circuit breakers is typi-
cally assessed through means of model-based methods.
However, there are drawbacks to these methods such
as the need for historical data. Inaccuracies thus arise
from variations between operating or test conditions
of the device under test and those used to build the
model or as references. The presented methodology
overcomes these drawbacks and enables more effective
model-based condition assessment through ANN. ANN
is used to construct a response model such that the cir-
cuit breaker’s condition can be compared to its previ-
ous state using the same input conditions. This enables
the deterioration or degradation of the circuit breaker’s
function to be assessed at any stage during its life.
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