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Abstract. Clinical retinal image analysis is an import
aspect of clinical diagnosis in ophthalmology. Retinopa-
thy of Prematurity (ROP) represents one of the most
severe retinal disorders in prematurely born infants.
One of the ROP clinical signs is the presence of retinal
lesions endangering the vision system. Unfortunately,
the stage and progress of these findings is often only
subjectively estimated. A procedure such as this is un-
doubtedly linked to subjective inaccuracies depending
on the experience of the ophthalmologist. In our study,
a fully autonomous segmentation algorithm to model
retinal lesions found using RetCam 3 is proposed. The
proposed method used a combination of retinal image
preprocessing and active contours for retinal lesion seg-
mentation. Based on this procedure, a binary model of
retinal lesions that allowed retinal lesions to be clas-
sified from a retinal image background was obtained.
Another important aspect of the model was feature ex-
traction. These features reliably and automatically de-
scribed the development stage of an individual lesion.
A complex procedure such as this has significant impli-
cations for ophthalmic clinical practice in substituting
manual clinical procedures and improving the accuracy
of routine clinical decisions.
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1. Introduction

Retinal image assessment is a routine clinical proce-
dure. Two medical imaging systems are conventionally
used in the ophthalmology clinical practice. Fundus
cameras, which acquire retinal images in high resolu-
tion, are used to capture individual structures in high
contrast. The RetCam 3 system is used to capture reti-
nal images with a resolution of 480×640 pixels, which is
substantially lower than a fundus camera, but is, how-
ever, suitable for examinations on prematurely born
children. Our research exclusively belongs to this area
[1], [2], [3], [4] and [16].

When a retinal system is investigated, several major
structures are important for clinical diagnosis. The
center of the retina contains the optic nerve (disc),
which is also a starting point for retinal blood vessels.
One of the most conventional pathological findings is
the retinal lesion. Such lesions are primarily a circular
shape and darker intensity spectrum (Fig. 1) [5], [6],
[7] and [17].

The intensity spectrum of a retinal lesion is an im-
portant feature that allows retinal lesions to be iden-
tified and also affects the effectiveness of segmenta-
tion. In some cases, the contrast in individual reti-
nal lesions and other retinal objects is low. This low
contrast is a major reason why many segmentation
methods fail, because it is nearly impossible to find
the edges of a retinal lesion [8], [9] and [10]. Another
significant problem concerns the intensity spectrum of
a retinal lesion. These spectra primarily overlap with
retinal blood vessels, and it is therefore not possible
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to apply the multiregional segmentation that would
separate retinal lesions from the surrounding retinal
structures[11], [12], [13], [14], [18] and [19].

Fig. 1: A retinal image captured with RetCam 3 showing retinal
lesions, indicated by the blue squares.

2. Analysis of Patient Retinal
Records

For the task of segmentation and modeling retinal le-
sions, the University Hospital of Ostrava supplied an
extensive dataset of retinal images to test the proposed
segmentation model. All data was anonymized and had
a unified resolution of 480×640 pixels. The quality of
a certain image may depend on a physician’s work with
the retinal probe as well as other factors, such as ob-
servable differences in the sharpness of retinal objects
and other image features. The dataset contained 2797
anonymous retinal image records. Retinal lesions were
present in 1015 of these images. These images were
used to test an algorithm. An example of three retinal
images containing retinal lesions is shown in Fig. 2.

Fig. 2: Example from the retinal dataset showing retinal le-
sions.

3. Retinal Image
Preprocessing

In order to enhance the features of retinal lesions, im-
age preprocessing was applied in the algorithm to sep-

arate RGB channels, equalize histograms, and apply
brightness transformation and median filtering.

First, the RGB image data was organized into in-
dividual intensity layers in order to highlight reti-
nal lesions in each channel with the greatest contrast
(Fig. 3). Empirically, a combination of the green and
red channels seemed the optimal compromise. It was
also apparent that retinal lesions were significantly sup-
pressed in the blue channel.

Fig. 3: RGB retinal image separated into red (left), green (mid-
dle) and blue (right) channels.

In the following step, histogram equalization was ap-
plied. This operation performs a homogenous distri-
bution of intensity levels, which is a benefit in pro-
cessing of the low-contrast data. Our procedure ap-
plied the CLAHE method (Contrast-Limited Adaptive
Histogram Equalization). A distinct advantage of this
method is equalization in smaller, local image segments
compared to conventional histogram equalization. An
example using the CLAHE method is given in Fig. 4.

Fig. 4: Comparison of the original histogram (top) and appli-
cation of the CLAHE method (bottom).

Brightness transformation was then applied. In the
proposed algorithm, brightness transformation boosts
the image contrast so that retinal lesions are displayed
in high contrast. An example of the brightness trans-
formation is shown in Fig. 5.

In order to prevent image noise, a median filter was
applied (Fig. 6 and Fig. 7) with a 2D circular convolu-
tion and 9×9 pixel convolution kernel. Median filtering
eliminated high-frequency noise, and retinal blood ves-
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sels were mostly obscured from the image. This result
improved the segmentation effectiveness, as the pres-
ence of blood vessels can limit segmentation accuracy
because of their identical intensity spectra to retinal
lesions.

Fig. 5: Comparison of a retinal image before applying bright-
ness transformation (left) and after brightness transfor-
mation (right).

Fig. 6: A retinal image before applying median filtration (left)
and after median filtration with a 9×9 kernel (right).

Fig. 7: Comparison of the RoI (Region of Interest) of the retinal
lesion without filtration (left) and after median filtration
(right).

4. Deformable Segmentation
Model

In this section, a segmentation model for retinal lesions
[15] is introduced. The geometrical parameters in this
model can be changed according to a predefined num-
ber of segmentation steps (iterations).

We use the functional energy, representing the intensity
distribution of individual pixels:

ELGDF =
∫

Ω
ELGDFx dx∫

Ω

(∑N
i=1−ω(x− y) log pi,x(I(y))dy

)
dx,

(1)

where pi,x(I(y)) represents the probability density
function in the area Ωi, ω(x−y) represents the weighted
function and− log p represents the transition from min-
imization to the desired maximization.

It is assumed that the image region Ω can be sep-
arated into two areas: the image background and the
foreground, in a form of a mathematical binary model.
Using the Heaviside function H, the energy function
may be expressed:

ELGDFx (φ, u1(x), u2(x), σ1(x)2, σ2(x)2

= −
∫
ω(−y) log px,i(I(y)M1(φ(y))dy

−
∫
ω(x− y) log px,i(I(y)M2(φ(y))dy,

(2)

whereM1(φ(y))=H(φ(y)) andM2(φ(y))=1−H(φ(y)),
and the energetic function can be rewritten as:

ELGDF (φ, u1, u2, σ
2
1 , σ

2
2)

=
∫

Ω
ELGDFx (φ, u1(x), u2(x), σ2

1(x), σ2
2(x))dx,

(3)

The level-set function is regularized in order to achieve
an accurate contour evolution. This regularization pre-
vents distortion of the active contour from the distance
given:

P (φ) =

∫
1

2
(| Oφ(x) | −1)2dx. (4)

The level-set function regulation is consequently done
by restriction of its length:

L(φ) =

∫
| OH(φ(x)) | dx. (5)

The entire energetic potential may be rewritten as:

F (φ, u1, u2, σ
2
1 , σ

2
2)

= ELGDF (φ, u1, u2, σ
2
1 , σ

2
2) + υL(φ) + µP (φ),

(6)

where υ, µ > 0 represent the weighted constants. Prac-
tically, the Heaviside function may be approximated by
the smoothing function defined as:

Hε =
1

2

[
1 +

1

2
tan−1

(x
ε

)]
. (7)

The derivation of such a function is:

δε = H ′ε(x) =
1

π

ε

ε2 + x2
. (8)
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Approximation of the energy functional is given by:

F (φ, u1, u2, σ
2
1 , σ

2
2)

= ELGDF (φ, u1, u2, σ
2
1 , σ

2
2) + υLε(φ) + µP (φ).

(9)

Minimization of the energy functional is done using the
gradient descent flow equation:

∂φ
∂t = −δε(φ)(e1 − e2) + vδε(φ)div

(
Oφ
|Oφ|

)
+µ
(
O2(φ)− div

(
Oφ
|Oφ|

))
,

(10)

where

e1(x) =

∫
Ω

ω(y − x)

[
log(σ1(y)) +

(u1(y)− I(x))2

2σ1(y)2

]
dy

(11)

e2(x) =

∫
Ω

ω(y − x)

[
log(σ2(y)) +

(u1(y)− I(x))2

2σ2(y)2

]
dy

(12)

The segmentation method is driven by controlling
parameters determining the flow and smoothness of the
segmentation process:

• n - the number of iterations,

• ∆t - the time step of the curve shift,

• µ - a constant ensuring as minimal deviation,

• α - a constant providing weight to the image en-
ergy,

• υ - a constant affecting the contour length,

• ε - this value gives a width of the Dirac impulse,
ensuring quicker movement of the initial curve,

• σ - is a parameter of the Kernel function, partially
compensating for inhomogeneity of the intensity
image domain,

• λ1 - determines the weight of the area inside the
curve during segmentation,

• λ2 - determines the weight of the area outside the
curve during segmentation.

5. Retinal Lesion Modeling

In this section, segmentation results and building a seg-
mentation model are introduced. A model of a retinal
lesion can be created from the initial curve traced in-
side a lesion. Since retinal lesions are circular in shape,

a rough approximation may be done with an initial cir-
cle of smaller radius than the lesion.

A critical parameter of active contour evolution is
the number of iterations. If the number of itera-
tions was underestimated, the active contour would not
reach the real borders of the lesion. However, if the
segmentation process was overestimated, the segmen-
tation curve would tend to spread outside the lesion
region. We empirically set the number of iterations at
300. Figure 8 and Fig. 9 illustrate the evolution of the
curve on the lesion’s RoI and the entire image area,
respectively.

Fig. 8: Evolution of the active contour with 300 iterations on
the lesion RoI.

Fig. 9: Multiple detection of three retinal lesions after 300 iter-
ations in the entire retinal image area.

The second part of the segmentation process is bina-
rization. The area containing lesions needs to be dif-
ferentiated from the image background. The evolution
of an active contour is linked to the energy map. This
map is able to classify the energy of the active contour.
The energy inside the contour has negative energy,
while the area outside has positive energy (Fig. 10).
From the energy threshold, a retinal lesion model can
be built (Fig. 10 and Fig. 11).

The following output (Fig. 11) shows a situation with
multiple lesions present.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 197



BIOMEDICAL ENGINEERING VOLUME: 17 | NUMBER: 2 | 2019 | JUNE

Fig. 10: Process of building a retinal lesion model: the active
contour after 300 iterations (left), the energy map (cen-
ter), and the binary model (right).

Fig. 11: A preprocessed retinal image (left) and a binary math-
ematical model of multiple lesions (right).

6. Tests and Quantitative
Comparison

As mentioned above, the segmentation procedure de-
pends on several aspects to determine the effectiveness
and accuracy of segmentation.

The number of iterations gives information about
how many times the active contour can change its
shape during the segmentation process. Figure 12
shows a comparison of different iteration settings. Fig-
ure 12(a) shows that adjacent retinal blood vessels may
cause significant problems when segmenting retinal le-
sions. If a large number of iterations is selected, the
active contour tends to spread into retinal blood ves-
sels, as their intensity spectra are nearly identical to
retinal lesions.

Fig. 12: Demonstration of the effect of iterations on contour
modeling: (a) over-segmentation – 400 iterations, (b)
under-segmentation – 50 iterations, and (c) optimal
settings – 300 iterations.

The second important parameter is the size of the
image matrix linked to the image features. We gener-
ally suppose that when processed retinal images have
a lower resolution, the objects of interest lose their con-
trast, and the effect of segmentation is therefore worse.
This situation can be modeled by reducing the image
matrix, as shown in Fig. 13. When processing reduced
images, object detail is reduced, and smoothness of the
retinal lesion model is compromised.

Fig. 13: Comparison of a segmentation model with 300 iter-
ations: native retinal image data (left) and reduced
image matrix, 50 % of original size (right).

As the second part of the tests, a quantitative com-
parison was performed. The accuracy of the pro-
posed retinal lesion segmentation model was evaluated
against conventional segmentation methods (Tab. 1).
A sample of 50 retinal image records was tested in
which the RoIs of the retinal lesions were extracted.
The following parameters were considered in the quan-
titative comparison:

• Variation of Information (VI ): this parameter
measures the distance between two segmentation
classes C1 and C2 in the sense of the average con-
ditional entropy, which is given by:

V I(C1, C2) = H(C1) +H(C2)− 2I(C1, C2). (13)

• Rand Index (RI ): this parameter measures the
level of similarity between the two regions. RI
compares the compatibility of assignment between
two pairs of elements in two clusters. The RI is
given by:

RI(C1, C2) =
2(n11 + n00)

N(N − 1)
, (14)

where N denotes the total number of pixels, n11 is
the number of pairs in the same cluster C1 and C2

and n00 is the number of pairs assigned to different
clusters. RI has values of [0; 1], where 0 indicates
that the clusters are completely dissimilar, while
1 indicates that the two clusters are identical.

• Mean Squared Error (MSE): this is an estima-
tor measuring the average of error squares between
two segmentation results. MSE represents a risk
function that corresponds to the expected value of
a squared or quadratic error loss.
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• Dice Coefficient (DSC ): this parameter com-
pares the similarity between two binary regions.
When considering the binary regions X and Y ,
where X is the gold standard and Y is retinal le-
sion segmentation, the Dice Coefficient is given by:

DSC(X,Y ) =
2 | X ∩ Y |
| X | + | Y |

. (15)

The DSC coefficient is normalized in the range
[0; 1], where 0 indicates no similarity, and 1 indi-
cates a full agreement between the regions X and
Y .

Tab. 1: A quantitative comparison of the proposed model with
alternative segmentation methods.

Pro-
posed
model

Otsu
Fuzzy

Threshold-
ing

K-means
cluster-

ing

FCM
cluster-

ing
VI 3.125 3.988 4.887 5.112 3.668
RI 0.987 0.811 0.945 0.654 0.739
MSE 33.254 45.568 44.221 40.257 34.558
DSC 0.911 0.745 0.851 0.574 0.871

Lower values indicate a better result in VI andMSE.
Higher values in the RI indicate a greater similarity to
the gold standard, which means a better result. All
the comparisons were made against the gold standard,
which is a manual segmentation performed by a clini-
cal expert. Compared to the alternative methods, the
proposed iteratively deformable segmentation model
achieved better results. This is also due to the charac-
ter of segmentation. Alternative segmentation gener-
ated multiregional segmentation in which the intensity
spectra of retinal lesions partially overlapped retinal
lesions. The retinal lesions were thus over-segmented
when retinal blood vessels were present.

Finally, complications related to time in the pro-
posed segmentation model were examined. The seg-
mentation algorithm was as effective as it was time-
consuming . This complication was linked to several
phenomena. First, the number of iterations was a sig-
nificant issue, and generally we attempted to reduce
the number of iterations in order to reduce comput-
ing time. However, fewer iterations could lead to im-
proper segmentation results. Second, image resolution
affected computing time. The segmentation procedure
worked more quickly on images with a lower resolution.
The testing procedure was done for a selected number
of iterations: 50, 150, and 300. The image matrix was
concurrently reduced to 75 %, 50 %, and 40 % of the
original size. Table 2 and Tab. 3 show the average re-
sults of 40 retinal images in which the most significant
lesions were selected for segmentation.

Tab. 2: Time required (in seconds) for 40 retinal records with
different segmentation settings. Results are averaged.

Image resizing
Number of
iterations 100 % 75 % 50 % 40 %

50 4.32 s 3.55 s 3.12 s 2.49 s
150 12.25 s 9.44 s 8.44 s 7.63 s
300 15.95 s 11.52 s 9.25 s 8.74 s

Tab. 3: Time required (in seconds) for 40 retinal records with
different segmentation settings. Results are median.

Image resizing
Number of
iterations 100 % 75 % 50 % 40 %

50 4.12 s 3.41 s 3.74 s 2.66 s
150 12.65 s 9.84 s 9.21 s 8.44 s
300 15.41 s 12.12 s 9.47 s 8.98 s

7. Conclusion

Analysis of retinal lesions was presented in this paper.
Modeling of retinal lesions has direct implications in
the clinical practice of ophthalmology. Evaluating the
geometrical parameters of retinal lesions in retinal im-
ages is a critical step in clinical diagnosis.

A complex segmentation method for modeling reti-
nal lesions was proposed. First, an image preprocess-
ing algorithm was introduced. The algorithm enhanced
features in a retinal image by boosting the contrast be-
tween individual retinal lesions and the retinal image
background.

The main feature of the segmentation algorithm was
the deformable segmentation procedure that allowed
geometrical features to be modified over time with
a predefined number of iterations. Experimentally, 300
iterations were found a good compromise in terms of
the algorithm’s performance and time required for com-
puting. In the final step of the segmentation proce-
dure, a binary model of a retinal lesion was made. This
model was based on the classification of the active con-
tour’s energy map.

A limitation of the model was simultaneous segmen-
tation of multiple retinal lesions. All of these lesions
would be classified into a binary model of the same
class. It was therefore not possible to differentiate
between individual lesions in the segmentation model.
Future work will involve developing an improved model
offering a classification procedure for individual retinal
lesions. This method would provide tracking for dis-
crete lesions. Using this procedure, the clinical devel-
opment of individual retinal lesions could be tracked.
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