THEORETICAL AND APPLIED ELECTRICAL ENGINEERING

VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

AN UNBALANCED CLOCK BASED DYNAMIC COMPARATOR:
A HIGH-SPEED LOW-OFFSET DESIGN APPROACH FOR
ADC APPLICATIONS

Vikrant VARSHNEY, Rajendra Kumar NAGARIA

Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology,
MNNIT Allahabad Campus, Teliarganj, Allahabad, 211004 Uttar Pradesh, India

rel1551@mnnit.ac.in, rkn@mnnit.ac.in

DOTI: 10.15598/aeee.v17i4.3326

Abstract. Currently, dynamic comparator approach
necessitates in high-speed and power efficient analog-
to-digital converter applications due to its high latching
speed and ultra-low power consumption. In this paper,
a novel dynamic comparator is proposed to reduce latch
delay and offset. The comparator benefits from add-on
cross-coupled transistors in latch structure and unbal-
anced clocks to enhance comparison speed and to lessen
input offset voltage occurred due to mismatch in cross-
coupled circuits in latch stage. The derivations for de-
lay and input offset voltage are presented for proposed
dynamic comparator with meticulous Monte-Carlo sim-
ulations. The results are verified by simulations in CA-
DENCE SPECTRE at 1 'V supply voltage and 90 nm
CMOS technology. A comparative analysis between the
proposed dynamic comparator and the previous reported
comparators has been presented. It is observed that the
delay is reduced up to 46 % and 6 % as compared to
conventional and two phase dynamic comparator, re-
spectively. Moreover, the proposed design consumes
53.36 uW power only. The Monte-Carlo simulation
shows that the standard deviation of input offset volt-
age is 10.8 mV which is 12 % and 77 % of conventional
and two phase dynamic comparator, respectively.
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1. Introduction

For past few decades, the regenerative latch circuits in
comparators have been playing a vital role as interface
between digital and analog signals [I]. It is a main
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building block that is widely used in a variety of sys-
tems such as Analog-to-Digital Converters (ADCs) [2],
memory devices [3] and [4], Variable Gain Amplifiers
(VGAs) [5] or switched capacitor circuits. High switch-
ing speed, low offset [6] and [7] and energy efficient [§]
comparators having small die area are required for flash
type ADCs. But trade-off between speed, offset and
power makes it challenging to design high speed low off-
set comparators [6]. In recent CMOS processes, high
speed comparators suffer from low voltage supply in
Ultra-Deep Submicron (UDSM) CMOS technology be-
cause the threshold voltage is not scaled in same way
as supply voltage [9], resulting in limitations on volt-
age headroom and common mode input voltage range.
A challenge towards high speed low power comparator
is increase of kickback noise [10] and offset caused by
mismatches due to threshold voltage, capacitances, and
current factors. Thus, this major thrust to design high
performance comparators is a huge challenging task in
ADC design environment.

Comparators are classified as static and dynamic de-
pending on the clock signal. Static comparators [10]
suffer from static power dissipation and are not suit-
able for high speed low power applications. Best
suited comparators for high speed operations are dy-
namic comparators having no static power dissipa-
tion [II]. However, this topology creates stacking
effect and fails for low voltage applications because
appropriate delay time requires proper voltage head-
room [I2]. Many researchers have introduced a lot of
techniques to design comparators such as body driven
technique [I3], [14] and [I5], charge steering tech-
nique [I6], Zero-V; MOS based technique [17], offset
cancellation technique [15], [18], [I9] and [20], shared
charge method [21], and supply voltage bootstrapping
and boosting [22] and [23] method to meet the above re-
quirements. In body-driven technique [I3], the thresh-
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old voltage requirement is removed due to MOSFET
operation in depletion mode, but it suffers from lesser
trans-conductance in comparison of gate driven tech-
nique. Also, for both PMOS and NMOS operation
in body driven design, a unique fabrication process as
n-well is required. The comparator, based on Zero-
Vi devices [17] provides rail-to-rail input range and
fast switching at low supply voltage. However, Zero-
V; devices in many CMOS processes are not available,
and fabricate them physically is impossible. So, above
mentioned techniques are not unswerving for low volt-
age applications in spite of being effective. To remove
stacking effect in [9] and [12], an extra circuitry is
added to conventional comparator to increase speed in
UDSM low voltage supply. In this approach, additional
circuitry creates component mismatch which should be
considered. To overcome all these challenges, double-
tail two stage dynamic comparators [24], [25] and [20]
comprising separate amplification stage and regenera-
tive stage are proposed for energy efficient and lesser
delay. By including some extra circuitry [25], power
consumption is reduced in the expense of delay and
area. To enhance regenerative speed, a new quasi-
dynamic [8] regenerative stage is proposed, but static
power dissipation occurs in amplification stage.

A classical single phase comparator named
as "Lewis-Gray" comparator was introduced
in [27] and [28] to explain compromise in offset,
delay and power. It is widely used in ADC sys-
tems [28], therefore is taken as reference in this paper.
It is fully differential dynamic comparator and consists
of pre-amplifier stage and regenerative latch stage like
other single phase comparators. When pre-amplifier
stage develops sufficient voltage difference at the
inner nodes of latch stage, it starts comparison and
functions properly. In [29], an analysis of input offset
voltage shows that it can be diminished on the cost
of higher power consumption. At the regeneration
phase amplification of input voltages and regeneration
of cross-coupled inverters occur concurrently. There-
fore, amplification should be quick and sufficient to
suppress offset of cross-coupled inverters which leads
to more power consumption. At the output node,
load capacitance mismatch again affects input offset
which needs more controlling input stage. To break
this stalemate between power and offset, a new double
phase based architecture [30] was introduced with
significant lesser input offset with less power penalty.
Nevertheless, a penalty on delay occurs.

In this paper, an improved unbalanced clock based
dynamic comparator has been proposed in which an ex-
tra circuitry is included in latch stage as cross-coupled
transistors. Now, output nodes of pre-amplifier stages
are passed to intermediate transistors in place of di-
rect connected with output nodes of latch stage that
improves the performance of the proposed comparator.
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A significant delay is reduced without penalty on offset
and power consumption but on the cost of some area
caused by extra circuitry. The remnant of this paper is
structured as follows: In Sec.[ 2. ] the proposed com-
parator is explained along with mathematical analysis
of delay and input offset. In Sec. design consid-
erations are explained in which some design issues are
elaborated. Simulation results are discussed and com-
pared with past designs in Sec.[ 4. ]| whereas Sec. [5. |
concludes the paper.

2.  Proposed Comparator

The proposed comparator, shown in Fig. is

composed of two stages: 1) pre-amplification
stage and 2) regenerative latch stage. Pre-
amplification stage is formed by transistors

Ml, Mg, Mg, M4, M5, and MG, where M1 & Mg
are input transistors and rest are controlled by
clock CLK;. Regenerative latch stage is formed by
transistors ]\477 Ms, Mg, MlO; ]\4117 M12, MKl; and
My,, where My;/Mg & Mg/M; transistor pairs set
up a latch together and M, & Mo are controlled
by clock CLKs5. It has been depicted that latch
effective trans-conductance, g, .rs and differential
output voltage at the start of comparison phase, AV,
affect the total delay time of comparator. To enhance
effective trans-conductance of latch stage and latch
speed, two intermediate transistors Mg, & Mk, are
included in latch stage which in turn enhancing AV,
resulting lower delay.

Voo Voo K’)ﬁ
CLK,—{"My, M, Mo My, —CLK
CLK,—[ My~ |_7 M —CLK,
F+ + —_|_—‘Vau/ F—
g | e I
in M L= M Via
E— [P b
Lf+i Lf—L
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CLE L M, M, Mja—cuq
Ve | Vier

Fig. 1: Proposed unbalanced clock based dynamic comparator.

The two separate stages, i.e. regenerative latch stage
and pre-amplification stage function with two clock
pulses CLK; and C LK, individually. These clocks aid
the input transistors to reduce the mismatch effect in
the latch stage. Thus, the input offset voltage of com-
parator is reduced significantly. This circuit has less
stacking, so it can operate at low supply voltage.
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2.1. Operation of Proposed Circuit

Architecture

The proposed comparator functions with the three
phase operations: pre-charge, amplification and com-
parison phase as illustrated in Fig. [2] During the first
phase when both the clocks CLK; and CLK5 are low,
the transistors M3—M, pre-charge the nodes F+ and
F— causing Mx,—Mp, to be off and M;;-Miy tran-
sistors pull the output nodes V', and V., to Vpp.
In second phase, CLK; is high, however CLK> is
still low. Now, the nodes F+ and F— start to dis-
charge and an input and reference dependent differen-
tial voltage AVp, p_ is developed due to differential
current produced in input branches In1—Ix2. The in-
termediate transistors My, and Mg, pass AVpy p_
to cross-coupled inverters that provides good shield-
ing between input and output. Hence, kickback noise
is reduced. A sufficient differential voltage is devel-
oped at the output nodes of the latch stage which is
related to differential input and reference voltages. The
clock CLKj3 is set to high during third phase, resulting
latch circuit starts to operate. The regenerative loop
of back-to-back inverters boosts the developed differ-
ential voltage at output nodes. Assuming V;} > V-

mn’?

Vott discharges faster than V, . Consequently, when
V.. (discharged by My, drain current) falls down to

Vbp —|Vinp| before V,, (discharged by M, drain cur-
rent), the corresponding transistor Myo will be ON in-
stigating comparison phase. V,,, pulls back to Vpp

and V!, discharges to V;p,,, due to PMOS intermediate
transistors. If VJQ < V.= the circuit works vice-versa.
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Fig. 2: Proposed unbalanced clock based dynamic Transient
response of the proposed comparator for the differ-
ential input voltage, AV;, = 5 mV, supply voltage,
Vpp =1 V and common mode voltage, Vo = Vpp.
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2.2. Delay Analysis

In order to validate delay reduction mathematically,
the delay equations are derived for this proposed cir-
cuit as presented in [2I] and [24]. The total delay con-
sists two parts: amplification phase duration, ¢4, and
regenerative latch stage delay, t;q¢ch-

(1)

The delay tqmp is the time duration in the amplifi-
cation phase when the latch stage load capacitance
Cy, at output nodes discharges until the first PMOS
(My/Mp) turns on. Here, the first PMOS (My/Mig)
will turn on when first preamplifier output node
(F'+/F—) will discharge from Vpp to (Vpp—Vinp) [24].
Thus, Cr, is discharged by Vipp in temp time duration.
Hence, t4mp is obtained as:

tdelay = tamp + tiatch-

Cr - {Vop — (Vbp — [Vinp|)}
Ip;

(2

tamp =

_ C(L : H/;fhp‘ _ 2C(L : H/;fhp‘

tamp - b )

3
o (3)
where Ip; is the drain current of Mg, . Let, sum of
Ipy and Ipy currents (i.e. Ipy + Ip2) is equal to total
supply current I, then Ig; can be approximated as half
of supply current I for small differential input (AV;,).

If AV} is the initial output voltage difference at the
beginning of comparison phase, latch delay can be ob-
tained from [31]:

Vbp
2

4
2|, 0

tiatch = T * In

where 7 = C/gm,efy in which g, ers is the effective
trans-conductance of the cross-coupled inverters. From
Eq. , it is clear that speed of proposed comparator
can be improved by enhancing AVy and gp, -

e Enhancement in AVy: As discussed earlier, tgmp
is the time after which comparison phase starts
and one of the latch output charges back to Vpp.
According to Eq. at this time 4,,, differential
output AVj has a significant impact on ¢4 time.
Enhancement in AV} lessens the latch time 4¢ch,-
From [24], AV} of this comparator is calculated as:

AVy = |V0J7r¢t(t = tamp) = Vour(t = tamp)| =
IB2 . tamp
=|Vi - = =
| fhp| CL

Ip2
= Vil [ 1= 222,
‘ thp|< IBl)
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where, g1 and Ig, are the drain currents of the
left and right branches of the latch stage. Consid-
ering AIB = |IBl — IBQ| = gmK1,2 X AVF+/F,,
Eq. is rewritten as:

AT
AVo = Vin |- == =~ 2 Vinp -

gmr1,2 X AVeyp_
I 9
(6)
where gy, k1,2 is the effective trans-conductance of
the intermediate PMOS transistors Mg, and M,
of latch stage and AVp, ,p_ is the differential volt-
age of the pre-amplifier stage output nodes F+
and F'— at the time ¢4,,,. Both these influencing
parameters g, k1,2 and AVp, g amplify AVj re-
sulting latch delay reduces.

The voltage difference at nodes F+/F— at time
tamp, AVpy p— can be determined as:

AVpyp— = |VEr(t = tamp) — Vi—(t = tamp)| =
_y Int —In2
—ltamp " —~ =
CrL r+o
gm1.2 - AVin

= tamp
P CL’FH*)

(7)
In this equation, In; and Iyo are the cur-
rents of input transistors of which difference
depends on the input voltage difference i.e.
Alp = gmi2 X AViy, and g2 is the trans-
conductance of the input transistors M; /M. By
substituting Eq. in Eq. (@, we have:

2
- (M) o

I CL,FH*)

XgmK1,2 X gmi,2 X AVip.

e Enhancement in effective trans-conductance: In
proposed comparator, it is evident that the out-
put nodes F'+/F— of input stage discharge in de-
cision making phase, ensuing turns on intermedi-
ate stage transistors and strengthens positive feed-
back, thus the effective trans-conductance of the
latch is increased i.e. (gm,eff + gmi1,2). Hence,

CL

T=——-—/ and:
ImK1,2 + Im.eff
Vbp
Cr, 9
tiatch = -In 9
ate (gmK1.2 + Imoefs) AV ©)

Finally, including effects of both parameters, the
total delay of proposed comparator is derived
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from:

tdelay = tiatch + tamp =
_ 2CL - |Ving| Cr y
I (gmr12 + Gmers)

Vbp

2
<2V;hp> OLii” 'ng1,2~gm1,2~AVin

(10)
From expression derived in Eq. , it can be
concluded that total delay strongly depends on
input voltage difference, supply current, trans-
conductance of input and intermediate stage tran-
sistors, and the ratio of Cp and Cp g4 (). These
parameters reduce delay logarithmically and am-
plify the whole speed of proposed comparator
which can be confirmed by the simulation results.

2.3. Mismatch Analysis

In the proposed comparator, two intermediate PMOS
transistors (Mg, and Mk,) are included with two
phase dynamic comparator [30], thus mismatch effect
of threshold voltage (AVrrki2) and current factor
(ABk12) due to Mg, /Mg, transistors is considered
for input offset analysis. However, the threshold volt-
age and current factor mismatch effect is insignificant
in most cases except small differential input voltage
(AV;,,), where output nodes of input stage F'+ and F'—
follows each other at similar discharge rate. As a result,
the decision making outcome might be disturbed due
to the mismatch of intermediate transistors. There-
fore, following two brief analysis of mismatch effects,
caused by threshold voltage and current factor, have
been considered on the input offset voltage.

o Effect of Threshold Voltage Mismatch of Mk, and
Mg, (AVrrki2): The differential current caused
by the My, /Mg, threshold mismatch is achieved
as:

(11)

Hence, the input offset voltage caused by the
My, /Mg, threshold mismatch is calculated as fol-
lows:

Alp = gmr1,2 X AVrpki 2.

CL’F-H—)

A‘/;Q:dUEAVThKIJ = 'AVThKLQ- (12)

tamp *9m1,2

o FEffect of Current Factor Mismatch of Mk, and
My, (APk12): The current factor mismatch of
My, /Mg, can be obtained as channel length mis-
match AWk 2. In order to find input offset volt-
age due to current factor mismatch, the differential
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current in terms of AWy o can be written as:

1 AWk1,2
Alg = —u,.Cpp - ——=
B 2/11) Cow i3

- (Vyski.2 — Vrnki 2)?.
(13)
Hence, the input offset voltage caused by the
My, /Mg, current factor mismatch is calculated
as follows:
Alp - Cp, g+

A‘/eq,dueAﬁIQQ = n =
amp " Ymk1,2 * Gm1,2

_ 0.54p - Co - Cp, g " AWki,2 «

tamp *Imk1,2 * Gm1,2 L

(14)

X (Vgsi1,2 — Vrnii,2)>

Thus, the total input offset due to both mismatch
factors of the intermediate transistors My, /Mg,
can be determined as:

— 2 2
Ttotal = \/UAVThK1,2 + TABK12 (15)

Expressions derived in Eq. and Eq. con-
clude that the trans-conductance of input transis-

tors (gma,2) is effective to diminish input offset.
So, the size of these input transistors is kept usu-
ally large in reducing the effect of intermediate
transistors mismatch, which results in low input
offset voltage.

2.4. Kickback Noise

In the regenerative latched based dynamic compara-
tors, the voltage discrepancy at the output nodes, cou-
pled to input stage transistors, can disturb the input
voltage due to nonzero output impedance. This effect,
known as kickback noise, may affect the comparator
accuracy. As explained in [I0], the high speed and
low power comparators create larger disturbance at
the input nodes. Hence, it is inescapable in the fast
latching circuits. In Fig. 3] the undesired peak errors
are depicted in the transient response of input volt-
age at AV;, = 10 mV. To determine kickback noise,
the Thevenin equivalent of input is modeled with re-
sistance of 8 k. Figure [ illustrates the peak error
in the input voltage as a function of input voltage dif-
ference for three different structures. The proposed
comparator has higher kickback noise than two phase
dynamic [30] while lower than conventional [27]. The
intermediate transistors of proposed circuit are not as
robust as latch of two phase dynamic. Thus, the size of
these transistors is determined in such a way that the
proposed circuit maintains high switching speed and
low power dissipation with reduced kickback noise.

The disturbance at reference voltages is negligible as
compared to inputs due to low impedance at reference
nodes. The main discrepancy occurs during amplifi-
cation phase when reference voltage takes some level
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settling time before the start of regeneration phase. In
some applications, in order to reduce the kickback noise
where it becomes significant, the kickback noise reduc-
tion techniques, such as neutralization in [I0], can be
applied. The proposed comparator is simulated with
neutralization technique as shown in Fig. [4]
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Fig. 3: Undesired peak errors in the
AV, =10 mV and Vpp =1 V.
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Fig. 4: The plot of measured peak error in input voltage due to
kickback noise versus input voltage difference variation.

3. Design Considerations

In the proposed structure, there are several design is-
sues that must be considered. The sizing of cross-
coupled PMOS transistors My, /M, , located between
cross-coupled inverters of latch stage, is an important
issue for high speed, low voltage, and low offset oper-
ations. These transistors may create the voltage head-
room problem, limiting the low voltage applications. In
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order to overcome this problem, Mg, /M, transistors
of low resistance, i.e. of large size, are required. The
input offset might be affected by the threshold volt-
age and current factor mismatch between My, /Mg,
transistors. To diminish this effect, Mg, /Mg, transis-
tors of large transconductance are required. Therefore,
large transistors must be used. However, the large size
transistors affect the parasitic capacitances of F+/F—
nodes, Cp, p4(—), and resulting delay bottlenecks. As,
the increased parasitic capacitances restrict the speed
of comparator, the size of the Mg, /Mg, transistors
is optimally selected in such a way that maintains the
high speed, low voltage, and low offset operations.

In the proposed comparator, CLK; and C LK, are
designed as unbalanced clocks. CLK, is delayed by
At time from CLK;, and amplification delay (¢4mp)
depends on this delay time (At). So, the design of
clock generation circuit is another important issue. As
depicted in Fig. the delay of CLKs with respect
to CLK, is controlled by varying V.., of the current
inverters in the clock buffers. At small AV}, the com-
parison is very difficult in evaluation phase. There-
fore, in amplification phase, the sufficient amplifica-
tion time (tqmp) is required to develop the differential
output voltage at the internal nodes F+/F—. Thus,
At time is set such that it is equal to or greater than
tamp (A > tamp). If At < tgpmp, it will create the error
in comparison phase for small AV;,,. At higher values
of At, the input offset is reduced effectively. However,
the delay is increased rapidly. Hence, to maintain the
high speed and low input offset, At is kept equal to
or slightly greater than t¢,,,. For proposed circuit,
At = tgmp. The conceptual waveforms are shown in

Fig.

CLK]
______ Current Inverter | ____
CLK,

— At 4—

V,
out CLK>

Vetrl P
/ Delayed famp

s byt Voo
Vin // F-
'1' F+

(a)

Fig. 5: (a) Clock generation circuit, (b) Conceptual waveform.

4. Simulation Results and

Discussion

To compare the proposed comparator with existing
conventional [27] and two phase dynamic compara-
tor [30], the circuit is designed in CADENCE and
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results are simulated in SPECTRE at 90 nm CMOS
technology with Vpp = 1 V, Vour = 0.9 V and
AV;, = 5 mV. For fair and authentic compar-
ison of simulation results, the designed circuits
from [27] and [30] are simulated in alike simulation
environment and framework which is used to simu-
late the proposed circuit. Figure [ shows the layout
of proposed circuit with area occupancy 64.08 pm?
(9 wm x 7.12 um). The appropriate caution has been
taken in layout design to avoid effect on power, offset
and delay. Figure [7] shows the dependence of delay on
power supply for proposed comparator and results are
compared with other two configurations. It is obvious
that speed is significantly enhanced in comparison to
other circuits. However, delay is higher at low supply
voltages in respect of higher voltage supplies. The de-
lay varies from 364.3 pS to 221 pS for power supply
0.7 V to 1.2 V. Figure [§ and Fig. [9] demonstrate the
variation of Tpeiqy and Traeen, With Vpp at different
values of differential input voltage. The values of AV},
are set as 1 mV, 5 mV, 10 mV, 50 mV and 100 mV.
It is obvious that Tpejay and Tratcn at particular Vpp
are reduced as AV, is increased. At Vpp = 1.1 V,
total delay is dropped from 334.59 pS at AV;, =1 mV
to 168.87 pS at AV;, = 100 mV whereas latch delay
drops down from 217.08 pS to 51.36 pS. Also, Tpeiay
and Tpqen at particular AV, are decreased as Vpp
is increased. At AVj, = 10 mV, T'pejqy lessens from
272.28 pSat Vpp = 0.7V to 186.46 pSat Vpp =12V
and Trq¢en from 132.04 pS to 71.33 pS.

Fig. 6: Layout schematic diagram of proposed comparator
(Area =9 pm X 7.12 pm).

In Fig. the analytical outcomes from Eq. (10)
are compared with simulated values of delay at differ-
ent AV, and Vonr = Vpp — 0.1 V. The delay calcu-
lated from analytical derivations shows good matching
with delay from simulations. The negligible difference
is found which is due to non-linear second order effects.
These effects are approximated and neglected during
analytical derivations of delay to convert the complex
expressions into simple expressions.
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Figure and Fig. depict the dependency of
Tbelay and Trgtcn, on input voltage difference and re-
sults are compared with previous structures. Here,
AV;, varies from 1 mV to 30 mV at Vpp = 1V,
Vem = 0.9 V and load capacitance, Cp, is 5 fF.
At AV, = 20 mV, Tpelay for proposed circuit is
190.63 pS while 298.6 pS and 197.67 pS for conven-
tional design and two phase dynamic circuit, respec-
tively. These results confirm that the delay is reduced
for proposed comparator in comparison with past com-
parators. Also, a significant speed is enhanced com-
pared to conventional circuit. The reason behind the
speed improvement is a boost in AV,. As shown in
Fig. [I3] AV, variation is represented with AVj,. As
AV;, is increased from 1 mV to 30 mV, AV, ampli-
fies fast at small differential input and becomes ap-
proximately constant at higher values of AV, which
confirms the delay is reduced minimally at large val-
ues of AV;,. It also depicts that AV} is heightened at
particular value of AV}, for proposed configuration as
compared to others. For example, at AV;,, = 10 mV,
AV} is boosted to 353 mV whereas 136 mV for conven-
tional circuit. At particular value of Cy, = 5 fF and
Vop = 1V, AV, increases by 225 mV, from 190 mV
to 415 mV for AV, variation from 1 mV to 30 mV.

800 - - - Conventional [27]
1= ---@-- Two Phase Dynamic [30]
700 S —— Proposed
600
)
£ 500
'_
400
300
200 - T T T T T T T T T T
0.7 0.8 0.9 1.0 1.1 1.2
Vo (V)

Fig. 7: Total delay for different structures versus Vpp at
AVzn =5 mV, VCM = VDD —0.1V.

Figure[I4]represents that slew rate depends on AVj,.
Slew rate increases with increment of AV}, and has
larger values for proposed circuit than other circuits.
The slew rate is defined as change in output voltage
with respect to time (AVp/At). It proves that slew rate
will be higher at small delay time. Slew rate at AV}, =
5 mV is 4.03 V-nS~! which is much greater than
2.14 V-nS~! for conventional structure. The whole
simulated results conclude that delay is significantly
reduced with comparable power dissipation, Py;ss as
shown in Fig. Pyiss at AV, =10 mV is 44.97 uW
for proposed which is comparable to 43.79 uW for two
phase dynamic. Moreover, Pg;ss is significantly lower
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than that of conventional circuit at every particular
value of AVj,. For example, Pjss = 53.36 uW at
AV;,, = 5 mV for proposed, on the contrary, 86.07 uW
for conventional circuit. It is obvious that speed is
expressively enhanced while consuming almost same
power. Hence Energy Per Conversion (EPC) [24] is re-

duced which is defined as EPC = ﬁ

S
ENOB is effective number of bits and fs is sampling
frequency.

, where

550

] -a-- AV, =1mV
500« _ —e— AV, =5mV

1 . S A AV, =10mV
4501 = R v AV, =50mV
400 AN -—¢= AV, =100mV

Fig. 8: Total delay for proposed comparator versus Vpp at var-
ious AVyy, (Vorr = Vpp — 0.1 V).

400
] - AV =1mV
350"~ . R —e— AV, =5mV
1 T~ A AV =10mV
3001 R ¥ AV, =50mV
250 T -~ AV =100mV
2 200
F 150 -

1004y

50+

0 T T T T T T T T T T T
0.7 0.8 0.9 1.0 1.1 1.2

Fig. 9: Latch delay for proposed comparator versus Vpp at var-
ious AV, (Vo = Vpp —0.1 V).

EPC in proposed circuit is slightly reduced in com-
parison with two phase dynamic circuit while an im-
pressive drop occurs in respect of conventional circuit
as shown in Fig. For 1 bit conversion, EPC is
decreased from 13.25 fJ to 3.4 fJ at AV, = 5 mV
after comparing with conventional structure, on the
contrary, a slight drop with two phase dynamic from
2.15 fJ to 1.99 fJ at AV, = 10 mV. In Tab. [I} the
performance of the proposed structure has been sum-
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marized. Table [2] includes and verifies both analytical
analysis and 0.2 k Monte Carlo simulated values for
offset voltage. There is a small difference in calculated
and simulated values. The offset voltage calculated
from analytical derivations is lower than the simulated
result by meticulous 1 — ¢ Monte Carlo simulations.
The small difference is due to the dynamic offset which
is not considered in analytical derivations.

600
] = AV, =1mV (Analytical)
550 —— AV, =1mV (Simulated)
] ® AV _=5mV (Analytical
500 [ i ¢ : ytical)
i - == AV, =5mV (Simulated)
450 < AV, =10mV (Analytical)
1Ny | AV, =10mV (Simulated)
& 400+
=
235016 "~
[ Tele L
300 RN
4« RN
o ~e.__
2504 el TTTEe—ol
] ""'“'*-N.NN‘_ o Tt - ____ )
ool s o
] Ay 4
150 T T T T T T
0.7 0.8 0.9 10 11 12
Voo V)
Fig. 10: Verification of analytical analysis with simula-
tion results for delay at different AV, and

Vem = Vpp — 0.1 V.

800

] - - - Conventional [27]
720 = ---@-- Two Phase Dynamic [30]
' —— Proposed

640 \

560 \

elay (ps)

480 -
400 -

320 +

240

160

AV, (mV)

Fig. 11: Total delay for different structures versus AV, at
Vbp=1V, Ve =09 V.

Figure [I7] shows the offset voltage variation of cur-
rent proposed circuit with previous configurations at
three different supply voltages. By using unbalanced
clock scheme, the input offset is reduced remarkable
with respect to conventional, and additions of inter-
mediate transistors lessen somewhat more input off-
set voltage, but keep in mind that size of these tran-
sistors should be larger with respect to others. At
Vbp = 1.2V, the input offset voltage (V) is 63.85 mV,

(©2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

11.67 mV and 8.32 mV for conventional, two phase
dynamic and proposed circuit, respectively. At each
point, the offset results are achieved using 1 — o Monte
Carlo simulations at 200 samples run. As shown in
Fig. (18] the standard deviation of the input offset (0,s)
for the proposed circuit is derived to be 10.8 mV at
Vpp = 1 V using 1 — ¢ based Monte Carlo simula-
tions.

600 -
- - #- - Conventional [27]
1\ ---@-- Two Phase Dynamic [30]
5004 —&— Proposed
400 \
£ 300-
- ]
200
100
O T T T T T T T T T T T T
0 5 10 15 20 25 30

AV, (V)

Fig. 12: Latch delay for different structures versus AV, at

Vop =1V, Vou = 0.9 V.

450
400
350
300
< 250~
€ )l
5 200+
> ]

150

100

. - - - Conventional [27]
---@-- Two Phase Dynamic [30]

—— Proposed
0 T T T T T T T T T

504 7

0 5 10 15 20 25 30
AV, (mV)

Fig. 13: AVy (differential output voltage at t =
different structures versus AV;, at Vpp
Verr =09 V.

Table [3] presents the corner analysis for proposed
comparator at AV, = 5 mV and Vpp = 1 V. Thus,
the proposed circuit works properly at different cor-
ners. However, the delay is increased with some extent
at SS corner. To draw a fair comparison, the proposed
structure and two other structures from [27] and [30]
are simulated and compared in same simulation en-
vironment at 90 nm CMOS technology as shown in
Tab. @ The width of the MOS transistors is set such
that the optimized values are drawn for delay and off-
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set. Finally, Tab.[5|relates the performance parameters
of the proposed structure with previous works.

Slew Rate (V-nS™1)

- - - - Conventional [27]
, ---@-- Two Phase Dynamic [30]
—A— Proposed

0 5 10 15 20 25 30
AV, (mV)
Fig. 14: Slew rate for different structures versus AV, at
Vbp =1V, Vep =09 V.
130
. - - - Conventional [27]
120 = ---@-- Two Phase Dynamic [30]
110_‘ ‘\\ —A— Proposed
100 I
90 \\_
2 s0- TS
Q_;a 70-.
60 -
50
40
30 T T T T T T T T T T T
0 5 10 15 20 25 30
AV, (mV)

Fig. 15: Power dissipation for different structures versus AV;,
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304
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15 20 25 30
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Fig. 16: EPC for different structures versus AV, at
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v

V
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Fig. 17: Input offset for different structures versus Vpp at
AV, =5mV, Voy =Vpp — 0.1 V.

Tab. 2: Validation of analytical analysis with simulated values
of offset voltage.

AVin =1 mV AV;,, =5 mV
at Vpp =1V, Vou =0.9 V. Vbbb Simulated | Analytical Simulated | Analytical
(V) Value Value Value Value
(mV) (mV) (mV) (mV)
0.8 12.32 10.95 16.81 15.7
1.0 8.79 7.41 11.56 10.8
Tab. 1: Proposed Comparator Performance Summary. 15 598 503 913 )
Parameters Values
CMOS Technology 90 nm Tab. 3: Performance summary of proposed comparator at dif-
Supply Voltage 1V ferent corners.
Total Delay, Tpeiay (Vom =09V,
248.2 pS
AVip =5 mV) p Parameters
Latch Delay, Tratch 127.53 pS Corners | Delay | Power | 1 — o Offset | EPC
Differential Output Voltage at tamp (AVD) 308 mV (pS) (LUW) (mV) (£J)
Average Power Dissipation @ freq. = 0.5 GHz | 53.36 uW TT 248.2 53.36 10.8 3.39
Maximum Sampling Frequency 5.7 GHz FF 212.6 56.94 8.9 3.01
Slew Rate 4.03 V.nS~T FS 273.8 50.23 13.3 3.47
Energy Per Conversion @ AV;,, =5 mV 3.4 1J SF 262.4 51.87 11.7 3.42
Input Offset Voltage (1 — o) (00s) 10.8 mV SS 325.1 48.35 15.4 3.96
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Tab. 4: Performance comparison with conventional and two phase dynamic comparator in same simulation environment.

Parameters [27] [30] | Proposed
Maximum Sampling Frequency (GHz) 1 3.9 5.7
Total Delay, Tpeiay (PS) @ AV =5 mV 468.2 | 265.3 248.2
AVip =1 mV 67.5 11.22 7.41
I it 1 AL
nput Offset Voltage, 0o (mV) —xy/ " — 51y 88.4 | 14.01 10.8
Kickback Noise Voltage (mV) Without Neutralization | 158.64 | 38.93 52.64
Q AV, =10 mV With Neutralization 67.37 7.25 14.43
Average Power Dissipation (WW) @ AV;, =5 mV 86.07 | 51.16 53.36
EPC (fJ) @ AV;,, =5 mV 13.25 3.63 3.4
Area (pm?) 77.34 | 58.62 64.08
Vop =1V, Voerm =09V, fecox = 0.5 GHz @Q 90 nm CMOS process
500 E = Offset
3 Number = 200
40.0 =3
» 3 Mean = -556.147 pVv
@ 3
S300 5  StdDev=108024mv
© 3 ° o
e E
© 200 3 / =
o 3 L.
=2 E L.
100 3
00 7 ‘ \ ‘ \ \ \ \ \ ‘ \ ‘ |
-45.0 -35.0 -25.0 -15.0 -5.0 5.0 15.0 25.0 35.0
Offset Voltage (mV)
Fig. 18: Histogram of input offset voltage for proposed comparator achieved at 0.2 k Monte Carlo simulations.
Tab. 5: Performance comparison with previous work.
Parameters 6 B | 4| 7| Boe [32] 33 | [34)* Proposed”
CMOS Technology (nm) 180 40 180 90 90 130 90 180 90
Supply Voltage (V) 1.8 1.1 1.2 1 1 1.2 1 1.8 1
Clock Frequency (GHz) 0.05 6 0.5 * * * * 0.1 0.5
Max. Sampling Frequency (GHz) 0.05 16.4 2.4 1 1 * 3 0.1 5.7
Calibration
Total Delay (pS) 4200 61.08 550 550 152 170 * 248.2
Time 400 ns
10.8 @ AV;,, =5 mV
Offset Voltage (mV) 3.44 * 7.8 102 33 100/0.22 16.3 *
741 Q AV, =1 mV
Kickback Noise Voltage (mV) Without Neutralization * * 43 * * * * * 52.64
@ AVj, =10 mV With Neutralization * * 13 * * * * * 14.43
Average Power Dissipation (LWW) 158.5 | 345.9 | 329 60 51 4080 162 900 53.36
Energy Per Conversion (£J) 0.7 57.65 | 240 * * * 59.2 * 3.4
Area (umz) 8883.36 | 64.5 392 3.84 3.3 * * * 64.08
@ Simulation Results, b Measurement Results, * Not Reported
5. Conclusion VIRTUOSO tool. The simulated results confirm the

In this paper, a novel unbalanced clock based dynamic
comparator has been presented to diminish latch re-
generation delay and offset. The latch stage is modi-
fied by adding two intermediate transistors which en-
hances the regeneration speed. The unbalanced clock
signaling aids to cancel the mismatch effect of the in-
terior devices. The analytical derivations for the pro-
posed comparator are presented to analyze delay and
offset that verify the results simulated by CADENCE

(© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

reduction in delay and offset for the proposed circuit
as compared to the previous structures. The maximum
sampling frequency of proposed comparator is 5.7 GHz
at Vpp = 1 V with total delay of 248.2 pS and input
offset of 10.8 mV at the cost of 53.36 uW power con-
sumption and 64.08 pm? area. The delay is reduced
up to 46 % and 6 % as compared to conventional and
two phase dynamic comparator, respectively. The off-
set is also minimized by 88 % and 23 % in comparison
of conventional and two phase dynamic comparator,
respectively.
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