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Abstract. This paper deals with the extremely pre-
cise, stable and fast solution of the ordinary differen-
tial equations. The solution of these is performed using
a method based on the Taylor series - The Modern Tay-
lor Series Method. The paper investigates two problems
to demonstrate the positive properties of the method:
linear problem - the behavior of signal transmission
on the telegraph line and a non-linear problem - the
Van der Pol oscillator. Both problems were analyzed
and solved using newly implemented MATLAB Modern
Taylor Series Method solvers. The results were then
compared to the state-of-the-art MATLAB solvers.
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1. Introduction

The paper deals with the solution of technical Ini-
tial Value Problems (IVPs) representing the problems
which arise from common technical practice (especially
from electrical and mechanical engineering). Initial
value problems are represented by the system of Or-
dinary Differential Equations (ODEs).

The best-known and the most accurate method
of calculating a new value of the numerical solution
of ODE [1]:

y/ = f(t>y)’ y(to) = Yo, (1)
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is to construct the Taylor series in the form:
2
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(2)

where h is the size of integration step, y; = y(¢;) is the
previous value and y; + 1 = y(t; + h) is the next value
of the function y(t).

The Taylor series can be very effectively imple-
mented as the variable-order, variable-step-size nu-
merical method [2] - Modern Taylor Series Method
(MTSM). The method is based on a recurrent calcu-
lation of the terms of the Taylor series for each inte-
gration step. Therefore, the complicated calculation
of higher order derivatives does not need to be per-
formed, the value of higher derivative is calculated nu-
merically from the previous one [3]. Equation (2]) can
then be rewritten in the form:

Yit1 = DYy + DY + DYs + --- + DY, (3)

where DY; denotes the terms of the Taylor series. The-
oretically, it is possible to compute the solution of ho-
mogeneous linear differential equations with constant
coefficients with arbitrary order and with arbitrary ac-
curacy. Let us denote as ORD the function which
changes during the computation and defines the num-
ber of terms of the Taylor series used in the current
integration step (ORD; 11 = n).

The important property of the method is automatic
order control, i.e. using as many terms of the Taylor
series as the defined accuracy requires. Therefore it is
common that the number of terms of the Taylor series
varies for different constant integration step sizes.

The MTSM has been implemented in MATLAB [4],
in C/C++ languages (FOS and TKSL/C software [2]).
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Additionally, the method can be effectively imple-
mented directly in hardware [5].

Several other implementations of the Taylor series
method in a variable order and variable step con-
text were presented by different authors. TIDES soft-
ware [0] and TAYLOR [7], which includes detailed de-
scription of a variable step size version. Other imple-
mentations based on Taylor series include ATOMF [g],
COSY INFINITY [9], and DAETS [10]. The vari-
able stepsize variable-order scheme is also described
in [II], [12] and [I3], where simulations on a par-
allel computer are shown. The approach based
on an approximate formulation of the Taylor methods
can be found in [14].

This paper amends and extends the paper presented
at the 2018 Modern Mathematical Methods in Engi-
neering conference [I5]. The solution of linear ODEs
now uses fixed step and fixed order instead of vari-
able step variable order approach shown in the paper.
The MTSM algorithm for nonlinear quadratic ODEs
is improved with recurrent calculation of terms of the
Taylor series (higher derivatives are not needed for cal-
culation). Due to these changes, the computation time
of MTSM was improved in comparison to the paper [15]
presented at the conference.

The paper is divided into several sections. In Sec.[ 2]
| the effective numerical solution of a system of linear
ODEs using higher order MTSM is shown and the Tele-
graph equation is analyzed. The Sec.[3. ] presents the
solution of quadratic nonlinear ODEs and the nonlin-
ear Van der Pol oscillator is discussed. All algorithms
of MTSM are efficiently implemented in MATLAB
software [4] using vectorization. Finally, the MTSM
algorithms are compared with MATLAB solvers [16].

2. Solution of Linear ODEs

Equation for linear systems of ODEs in the form
' = Ay + b can be rewritten as:

N h? .
i1 :gi'i‘h(Ag;‘—f'b) +§A(A§H—b> T
WA=V (Ag 1
+A (Ayi + b) :
@
where A is the constant Jacobian matrix and b is the
constant right-hand side of the system.

Moreover, Eq. can be rewritten in the form
Eq. where terms of the Taylor series can be com-
puted recurrently:

1
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The recurrent calculation of Taylor series terms is
useful in error control. It is stopped when:

n

D

j=n—stop

IDY;]] < eps,

(6)

where eps means error per step and stop denotes the
number of successive terms of the Taylor series, which
have met the stopping criterion Eq. @ In this paper,
the stop is set to 3.

For the solution of linear ODEs with constant in-
tegration step size h, the constant number of Taylor
series terms (ORD = n) which satisfies Eq. () is ob-
tained.

The Eq. @ can be also rewritten in the form:
vt = Ayfi + Ao, (7)

where the matrices A, and A, are in the form:

A, = Z
j=0

=

i
TA, Ay
j.

The fixed integration step size can be approximated
using:
eps-n
; (9)
[|A™]|

therefore, constant matrices A, and A; are precalcu-
lated only once at the beginning of the solution.

h<

2.1. Telegraph Equation

The telegraph line is represented by the electric circuit
depicted in Fig. [I| [I7]. The behavior of the circuit is
described by the system of ODEs:

, 1
' (10)

where S denotes the number of RLC segments of the
telegraph line. The solution of the system of ODEs
Eq. leads to the linear IVP in the form:

j'=Aj+b, (11)
where A is a matrix of constants (R, L, and C param-
eters of the circuit), 7 is a vector of variables (voltages
and currents), b is a vector of constants and g is a vec-
tor of initial conditions. The block structure of matrix
A and vectors ¥ and b can be found in [I7].

:J(O) = :'j(h

For the simulation experiments in this paper, the
capacitances and inductances are the same, C; = Cy =
--~:CS:1pFandL1:L2:-~-:LS:10nH
(homogeneous lossless telegraph line).
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Fig. 1: Model of the telegraph line - series of S segments.

Moreover, the transmission line is adjusted if
Ry =Ry =+VL-C~1 =100 . The angular velocity is
set w = 3-10° rad-s~!. The input voltage ug should be
generally constant (DC circuit) or harmonic (AC cir-
cuit) signal. In the case of DC circuit, the input voltage
ug is hidden in constant right-hand side b. In the case
of AC circuit, the input voltage ug = Upsin(wt) can
be computed using auxiliary system of coupled linear
ODEs:

Uy = we, U

0
12
' = —wug, x(0) = Up. (12)

The AC circuit with input voltage ug = sin(wt) is
used. The propagation constant per unit length of one
segment for simple model of transmission line in Fig. [I]
can be calculated as trc = V/LC. The total delay of
the input signal can be computed as tqeiay = Strc.
The delay of the output voltage uc,,, for 100 segments
is shown in Fig. 2] The time of simulation was set
at tmax = 2tdelay for all experiments.

Voltage (V)

Fig. 2: Delay of the signal on the transmission line with

S = 100 segments.

The MATLAB solver, using the explicit MTSM with
a constant order and constant step size scheme Eq.
for linear systems of ODEs Eq. has been imple-
mented. This algorithm was tested on a set of examples
of a telegraph line with different number of segments S.
The maximum simulation time t¢,,,, is dependent on
the number of segments. The number of integration
steps rises with the maximum simulation time, see
Tab. Moreover, it is essential to verify the stabil-
ity of methods.
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The MTSM was compared with vectorized MAT-
LAB explicit ode solvers. Both relative and absolute
tolerances for all solvers were set to eps = 1019, All
codes are implemented in MATLAB 2015a and compu-
tations were partially performed on SALOMON super-
computer at I'T4Innovations National Supercomputing
Center, VSB-Technical University of Ostrava [I8].

Comparisons of MTSM and MATLAB ode
solvers [16] are in Tab. [1] and Tab. [2 for MTSM with
order 30 and 60, respectively. Each run time is taken
as a median value of 100 computations. Ratios of
computation times ratio = ode/expTay > 1 indicate
significantly faster computation using MTSM in all
cases.

Tab. 1: Time of solutions: explicit Taylor expTay (ORD = 30)
and MATLAB explicit ode solvers comparison.

ode23 | ode45 | odell3 | expTay
S . . .

ratio | ratio ratio (s)
200 2919.2 439.3 148.1 0.0054
600 1101.4 215.7 61.3 0.052
1000 934.7 163.7 47.9 0.14
1400 | 1015.9 180.5 46.2 0.26
1800 | 989.9 161.8 41.7 0.42

Tab. 2: Time of solutions: explicit Taylor expTay (ORD = 60)
and MATLAB explicit ode solvers comparison.

ode23 | ode45 | odell3 | expTay
S . . .

ratio | ratio ratio (s)
200 | 4573.5 693.3 234.9 0.0035
600 1639.3 311.8 91.1 0.035
1000 | 1267.2 221.2 65.9 0.1
1400 | 1505.6 273.5 68.3 0.17
1800 | 1536.4 248.3 64.4 0.28

The number of integration steps is depicted in Tab.
where abbreviations Tays, and Tayg, mean expTay
of ORD = 30 and ORD = 60, respectively.

Tab. 3: Numerical solution: number of integration steps.

S ode23 | oded45 | odell3 | Tayso | Tayso
200 95627 26548 4297 147 55
600 267984 71908 12866 440 165

1000 | 439362 114316 21436 733 275
1400 | 610765 | 155172 30005 1026 385
1800 | 782287 | 194984 38574 1319 495

More comparisons of MTSM numerical solutions of
linear systems of ODEs can be found in [19] and [20].
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Solution of Nonlinear
(Quadratic) ODEs

3.

In this section, the effective solution of a special case
of nonlinear quadratic systems of ODEs is described.
The nonlinear quadratic system of ODEs is any
firstorder ODE that is quadratic in the unknown func-
tion. For such system, Taylor series based numerical
method can be implemented in a very effective way.

Equation for nonlinear-quadratic systems
of ODEs can be rewritten as:

7' = A7+ By +C7% +b, §0) = g, (13)

where A € R™*"¢ is the matrix for linear part of the
system, B € Rnrexne(ne=1)/2 ig the matrix for mixed
quadratic term, C € R™*"¢ is the matrix for pure
quadratic term, b € R is the right-hand side for the
forces incoming to the system, gy is a vector of initial
conditions, and the symbol ne stands for the number
of equations of the system of ODEs. The unknown
function 72 represents the vector of multiplications
(1y1, Y2v2,- -, UneYne)' and similarly i, rep-
resents the vector of mixed terms multiplications
(Yjs Ykrs YiaUhor - - yjne(nefl)/kanc(ncfl)/2)T . The in-
dexes j and k come from combinatorics C(ne,2). For
simplification, the matrices A, B, C and the vector b
are constant.

Higher derivatives of Eq. can be effectively com-
puted in MATLAB software [4] using matrix-vector
multiplication, e.g. higher derivative #?! for pure
quadratic term (with matrix C) can be expressed as:

p—2
. . —1
77 = C<Zg[p_1_z]_ o (p ‘ ) e ye[p—u)’
; i
=0
(14)
where the operation stands for the element-
byelement multiplication, i.e. #P). « g2l is a vec-
tor (ygpl]ygpz] . ,y,[fé]y,[fez])T. The binomial coefficients

(p :1) can be effectively precalculated using Pascal tri-

angle, for more information, see pascal function in
MATLAB software.

¢ ko

Moreover, the higher derivatives of the terms By,
Cy? , in Eq. can be included in a recurrent calcu-
lation of Taylor series terms DYp and DY

DY, = DY¢, =0,

DYp, = h(Byj,), DYe, = h(Cy?),

- 1 = -
DYBl = % <B Zmzl DY}J—m~ *DYkJ,m—l) y (15)
Vo, = 4 (OShy DY DY),

DY, = DY, , + DYp, , + DY¢, |,
l=2,...,n,

where the linear term DYy, , is computed using

Eq. .
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3.1. Van der Pol Oscillator

The Van der Pol oscillator is a nonconservative oscil-
lator with nonlinear damping. Energy is dissipated
at high amplitudes and generated at low amplitudes.
As a result, there are oscillations around a state at
which energy generation and dissipation balance.

Due to the unique nature of the Van der Pol oscilla-
tor, it has become the cornerstone for studying systems
with limit cycle oscillations. In fact, the Van der Pol
equation has become a staple model for oscillatory pro-
cesses not only in physics, but also in biology, sociology,
and even economics.

From mathematical point of view, the Van der Pol
equation is an ordinary differential equation:
v+’ -1y +y =0, (16)
where the parameter u represents the nonlinearity and
the strength of damping [2I]. Right-hand side func-
tion b represents the forcing function. When p = 0,
the equation becomes y” + y = 0, which is a sim-
ple harmonic oscillator. For p > 0 the system enters
a limit cycle: near the origin (y = ¢’ = 0), the system
is unstable; far from the origin, the system is damped,
see Fig. [3

—1=0.1
5/ G
=5
(./J /e
T 0 ¢
© 7
£\
~ N\
-5t
2 0 2
y (rad)

Fig. 3: Limit cycles of unforced Van der Pol oscillator.

The behavior of the system for different parameters
 in the time domain is shown in Fig. [4]

The second order ODE Eq. can be transformed
(using substitutions y; = 3" and y, = y?) into the
auxiliary system of ODEs:

y/ = Y1,
vy =l —y2)y1 —y +0, (17)
Yy = 2yY1,

with initial conditions y(0), y1(0) = '(0), y0) = y*(0)
and zero right-hand side b = 0.
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- -y' (rad-s’!)

Position (rad), velocity (rad-s')

— y(rad)
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()}
PR

Position (rad), velocity (rad-s™)
& o

1‘0
t(s)
(c) p=5.

Fig. 4: Behavior of Van der Pol oscillator in the time domain.

The system Eq. is equivalent with Eq. ,

where:
y . 0
g: Y1 ) b= 0 ) A= 03
Y2 0
0 0 O
B= 00 —u |, (18)
2 0 0
0 1 0
C=| -1 p O
0 0 O
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Fig. 5: The MTSM solution: ORD function.

The MATLAB solver of explicit variable step size
and variable order MTSM for nonlinar quadratic sys-
tems of ODEs Eq. has been implemented. This
algorithm was tested on a set of examples of Van der
Pol systems Eq. with different values of the pa-
rameter p. The MTSM was again compared with
vectorized MATLAB explicit ode solvers. Both rel-
ative and absolute tolerances for all solvers were set to
eps = 10710, Results of the comparisons of the MTSM
with MATLAB ode solvers are shown in Tab.[ll Ratios
of computation times ratio = ode = expTay > 1
indicate faster computation of the MTSM in all
cases. The number of integration steps is shown in
Tab. [} The MTSM Order (ORD) is shown in Fig.
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As can be seen, the ORD is changing rapidly especially
for problems involving higher non-linearities (larger
parameter 1). Behavior of the function ORD demon-
strates that the method changes used integration or-
der dynamically during calculation with respect to the
value of parameter eps.

Tab. 4: Time of solutions: explicit Taylor expTay and MAT-
LAB explicit ode solvers comparison.

ode23 | ode45 | odell3 | expTay
s ratio | ratio ratio (s)
0.1 156.4 8.43 1.9 0.063
1 193.9 8.9 4.12 0.088
5 108.3 8.2 3.1 0.15
10 58.1 5.9 2.1 0.2

Tab. 5: Numerical solution: number of integration steps.

w ode23 | oded45 | odell3 | expTay
0.1 | 283858 | 22280 1969 100

1 354201 | 36660 3986 250

5 337565 | 57344 5002 1000
10 | 241783 | 54700 4581 2000

3.2. Forced Van der Pol Oscillator
The forced Van der Pol oscillator equation adds to the
Eq. nonzero right-hand side (e.g. some harmonic
signal b(t) = F sin(wt)):

y" — u(l —y*)y' +y = Fsin(wt), (19)
where F' is the amplitude and w is angular velocity of

the wave signal (rad-s™1). The limit cycle for u = 5,
w=1and F =2 is depicted in Fig. [

The behavior of such system in the time domain is
shown in Fig. Bl In electric circuits, the wave func-
tion can be represented as some AC power supply
b(t) = up = Uy sin(wt), see Fig. [

Equation (|19) is equivalent to the system of five
ODEs Eq. with generating system for right-hand
side sine function Eq. . This autonomous system of
ODEs can be again represented in matrix-vector form

Eq. .

Results of numerical solutions of forced Van der Pol
Eq. with different parameter 4 and set parameters
w =1, F = 2 are in Tab.[f] Ratio of computation times
ratio = ode = expTay > 1 indicates again faster
computation of the MTSM in all cases. The number
of integration steps for all methods can be found in
Tab. @

Take a note, that the parameter w in Eq. has
also significant impact on numerical computations, see
Tab. and Tab. @ The last line of Tab. |§| (for w > 10%)
indicates that the computation time of ode23 solver is
more than 50 hours.
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Fig. 6: Forced Van der Pol Oscillator.
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Fig. 7: Limit cycle of forced Van der Pol oscillator.
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Fig. 8: Behavior of the forced Van der Pol oscillator in the time
domain.

More comparisons of MTSM numerical solutions of
nonlinear systems of ODEs can be found in [22].
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Tab. 6: Forced Van der Pol oscillator: time of numerical solu-
tion.
ode23 | ode45 | odell3 | expTay

s ratio | ratio ratio (s)
0.1 250.6 9.4 3.9 0.076

1 190 10 3.8 0.12

5 130.4 8.5 3.1 0.17

10 18.7 6.7 2.3 0.22

Tab. 7: Forced Van der Pol oscillator: number of integration
steps.
o ode23 | ode45 | odell3 | expTay
0.1 | 382029 32184 3347 100
1 449441 | 52732 4779 400
5 464230 | 67424 5727 1000
10 | 385322 | 68740 5665 2000

Tab. 8: Forced Van der Pol oscillator (u = 5, F' = 2): time of
numerical solution.
w ode23 | ode45 | odell3 | expTay
(rad-s~!) | ratio | ratio ratio (s)
10t 434.9 21.8 4.2 0.21
102 1025.8 51.3 8.5 0.9
102 1526.3 77.9 10.7 10.5
104 > 1500 88 12.7 1214

Tab. 9: Forced Van der Pol oscillator (4 = 5, F' = 2): number
of integration steps.

w (rad-s™1') | ode23 | oded45 | odell3 | expTay
10?1 19-10% | 21-10* | 11-10% 10 - 102
102 19-10% | 21-105 | 94-10% | 20-102
103 19-107 | 21-10% | 94-10* | 20-103
104 - 21-107 | 94-105 | 20-10%
4. Conclusion

This article dealt with the numerical solution of lin-
ear and nonlinear systems of ODEs coming from elec-
trical circuits simulations. The model of the tele-
graph line was chosen as the example of the linear
problem, the Van der Pol oscillator as the example
of nonlinear one. All calculations were performed us-
ing MATLAB software. The MTSM solver for non-
linear quadratic systems of ODEs was successfully im-
plemented. The MTSM is able to solve these problems
faster and more efficiently than the state-of-the-art ode
solvers in MATLAB.

Future work will be focused on the solution of gen-
eral nonlinear problems, parallelization of the MTSM
algorithm and its hardware representation.
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