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Abstract. The presented article deals with the steady-
state analysis of five-phase Induction Motor (IM),
which is supplied by rectangular voltage from a five-
leg Voltage Source Inverter (VSI). The new pro-
posed approach is derived from complex Fourier-
series using to express inverter terminal voltages.
Based on mathematically described inverter output
voltages, a formula for VSI output space phasor
was derived. Assuming sinusoidal motor wind-
ing distribution and on the basis of motor param-
eters, stator and rotor current space phasors for
defined motor load were determined. Finally, the elec-
tromagnetic torque ripple waveforms for different IM
operation states were investigated.
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1. Introduction

Variable speed electric drives, in general, preferentially
utilize three-phase induction machines. Providing that
the variable speed Alternating Current (AC) drives re-
quire a power electronic converter, the number of ma-
chine phases is practically unlimited. This fact led to
an increasing interest for multiphase AC drives appli-
cations. Most often, they are five-phase induction ma-
chines that, by their nature, offer some advantages over
their three-phase counterparts.

E. E. Ward and Harrer [1], for the first time in
1969, have presented the preliminary investigation on
inverter fed five-phase IM and suggested that the am-

plitude of torque pulsation could be reduced by increas-
ing the number of phases [2].

Major advantages of using a five-phase machine in-
stead of the three-phase one consist of its higher torque
density, greater efficiency and fault tolerance [3], [4]
and [5]. Other advantages include reduced electromag-
netic torque pulsation and reduction in the required
rating per inverter leg. Noise characteristics of the
five-phase drives are better when compared with the
three-phase ones. For this reason, it is expected to
use them in residential areas and hospitals where noise
presents an undesirable element.

In the majority of cases, the supply for a multi-
phase variable-speed AC drives is provided by a Volt-
age Source Inverter (VSI) [6]. Output voltage control
has a significant effect on the electromagnetic torque
ripple of the motor. Control of VSI is provided in pre-
vail by Pulse Width Modulation (PWM) techniques.
Space Vector PWM (SVPWM) has become the most
popular because of its easy digital implementation.
However, some industrial applications of the five-phase
drives do not need to modulate the output voltage. Be-
cause the rectangular voltage supply causes the ripple
in motor’s electromagnetic torque, the inverter control
is easier and reduces requirements on semiconductor
switching units [7], [8], [9] and [10].

2. Modeling of a Five-Phase
VSI

The power circuit topology of a five-phase source in-
verter is shown in Fig. 1. VSI consists of a parallel
connection of five transistor legs denoted (a, b, . . . , e).
It is supplied by a constant voltage source provided by
an isolated Direct Current (DC)-source and a capaci-
tive DC-link. Each leg is composed of two Insulated-
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Fig. 1: Five-phase bridge connected VSI.

Gate Bipolar Transistor (IGBT) transistors with anti-
parallel connected free-wheeling diodes used to ensure
a negative current path through the switches. Inverters
output terminals are numbered (1, 2, . . . , 5) [11].

To build a mathematical model of VSI, the complex
Fourier series were used. They are extremely useful as
a way to break up an arbitrary periodic function into
a set of simple terms that can be solved individually
and then recombined to obtain the solution to the orig-
inal problem.

In the next, we assume idealized semiconductor de-
vices which satisfy the following properties:

• Power switches can handle unlimited current, and
they are able to block unlimited voltage.

• Voltage drop across the switch and leakage current
are zero.

• The switches are turned on and off with no rise
and fall times.

• Inverter input capacity is sufficiently high so we
can suppose the converter input DC voltage con-
stant for any output currents.

These assumptions simplify analysis of the power cir-
cuit and help to build against mathematical model.

The transistors in each leg are switched so that they
form voltage impulses over the half period of the de-
sired output frequency. The voltage impulse of the
first transistors leg measured against the negative pole
of the DC link can be expressed as [12], [13] and [14]:

ua = udc + u01 =
Ue
2

+ 2Ue Re

( ∞∑
k=1

ck e
jkωt

)
, (1)

where udc is DC and u01 is AC voltage component,
Ue is DC link voltage and ck is Fourier coefficient de-
fined as:

ck =
1

j2kπ

(
1− e−jkπ

)
valid for k 6= 0. (2)

Figure 2 shows the first leg output voltage wave-
form calculated on the base of Eq. (1). This was
drawn for DC supply Ue = 350V and output frequency
f = 50Hz.
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Fig. 2: Inverter leg voltage waveform.

Voltages of the other legs are mutually displaced by
the voltage shifting factor a = ej

2kπ
5 . Then, we can

c© 2020 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 66



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 18 | NUMBER: 2 | 2020 | JUNE

express them as:

ub = aua, uc = a2ua, (3)
ud = a3ua, ue = a4ua.

Motor phase voltages are given by the difference of
voltages between two legs. Since audc = a2udc =
a3udc = a4udc = udc (DC voltage shift), the phase
voltages can be expressed as follows:

u1 = ua − uc = (1− a2)u01,

u2 = uc − ue = (a2 − a4)u01,

u3 = ue − ub = (a4 − a)u01,

u4 = ub − ud = (a− a3)u01,

u5 = ud − ua = (a3 − 1)u01,

(4)

where u01 = 2Ue Re

( ∞∑
k=1

ck e
jkωt

)
is the AC compo-

nent of the voltage ua.

Figure 3 shows a phasor diagram of the pentacle con-
nected five-phase voltage system. The phase voltages
are mutually shifted by 2 2π

5 . These form a second-
order voltage system.

0
1

4

5

3

2

u1

u2

u3

u4

u5
u04

u05

u01

u02
u03

Fig. 3: Phasor diagram of the pentacle connected five phase
voltage system.

Figure 4 depicts the motor phase voltage waveform cal-
culated on the base of Eq. (1) and Eq. (4).

To simplify the calculation of AC motor quantities,
it is advantageous to employ space phasors. This trans-
formation is very often used for the analysis of multi-
phase electric systems. The term "space" originally
stands for the two-dimensional complex plane, in which
the multi-phase quantities are transformed.

The transformation of space phasor is directly de-
rived from the sum of voltage phase phasors. Based

on the Eq. (4), the space phasor transformation is thus
defined as published in [15], [16] and [17]:

u =
2

5

[
Re(u1) + Re(u2)a1 + Re(u3)a21+

+Re(u4)a31 + Re(u5)a41

]
,

(5)

where a1 = ej2
2π
5 is the space shifting factor for the

second-order system.

5 10 15 20 25 30 35 40 45
−400

−300

−200

−100

0

100

200

300

400

u 1  (
V

) 
→

t (ms) →

Fig. 4: Motor phase voltage waveform.
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Fig. 5: Voltage space phasor trajectory.

Coefficient 2
5 keeps the magnitude of the phasors dur-

ing the transformation constant.

In the Fig. 5, there is shown the VSI output voltage
space phasor trajectory. The green lines represent the
path of voltage space phasor jump.
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The real and imaginary parts of the voltage space pha-
sor can be separated and rewritten as:

u = Re(u) + Im(u) = uα + uβ . (6)

By using space phasor, the multi-phase components
are transformed into a two-dimensional coordinate sys-
tem. They are shown in Fig. 6.
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Fig. 6: Two-dimensional voltage system components.

For further calculations, it is necessary to perform
harmonic analysis of the two-phase voltage system.
The following equations apply to the amplitudes of
two-phase voltage harmonic components Aαk and Aβk,
where k = 1, 2, 3, . . . :

Aαk =
2

5
abs
[
Re(u1) + Re(u2)a1 + Re(u3)a21+

+Re(u4)a31 + Re(u5)a41

]
,

Aβk =
2

5
abs
[
Im(u1) + Im(u2)a1 + Im(u3)a21+

+Im(u4)a31 + Im(u5)a41

]
.

(7)

For each phase of harmonics, the phase shift is calcu-
lated as follows:

φαk = arg
[
Re(u1) + Re(u2)a1 + Re(u3)a21+

+Re(u4)a31 + Re(u5)a41

]
,

φβk = arg
[
Im(u1) + Im(u2)a1 + Im(u3)a21+

+Im(u4)a31 + Im(u5)a41

]
.

(8)

Figure 7 depicts calculated harmonic components of
the two-phase voltages. Voltage waveforms are com-
posed of 1, 9, 11, 19, 21, 29, 31, . . . harmonics. Waves of
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Fig. 7: Harmonic analysis.

the 1, 11, 21, 31, . . . form positive and 9, 19, 29, 39, . . .
negative harmonics voltage sequences. There are no
zero voltage sequences.

For the harmonic components which form positive volt-
age sequences, the following relationship is applied:

kp = 1 + 10 (n− 1), n = 1, 2, 3, . . . . (9)

For negative voltage sequences:

kn = 10n− 1, n = 1, 2, 3, . . . . (10)

3. Motor Currents Calculation

For the stator and rotor current space phasors calcula-
tion, a classical equivalent circuit of IM shown in Fig. 8
was used.
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Fig. 8: Equivalent circuit of IM.

The calculation was carried out used measured pa-
rameters of five-phase two poles IM. The primed quan-
tities are rated to the effective number of turns of the
stator winding (see App. A).
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Fig. 9: Stator and rotor current space phasors trajectories.

Referred to the equivalent circuit above, the follow-
ing equation for the stator current space vector is valid:

[
uk
0

]
=

R1 + jX1 jXm

jXm
R2′
sk

+ jX2

[i1k
i2k

]
, (11)

where X1 = X1σ + Xm, X2 = X ′2σ + Xm

and sk =
kpω−ωm
kpω

– slip for the positive,
sk = 2− knω−ωm

knω
– slip for the negative sequence com-

ponents. ωm is the mechanical motor speed.

For the stator and rotor currents components:

[
i1k
i2k

]
=

1

D

R2′
sk

+ jX2 −jXm

−jXm R1 + jX1

[uk
0

]
, (12)

where, D = (R1 + jX1)
R′2
sk

+ jR1X1 − X1X2 + X2
m.

The sum of current components defines the stator and

rotor space phasor:

i1 =

∞∑
k=1

i1k, i2 =

∞∑
k=1

i2k. (13)

Calculated stator and rotor current space phasors
trajectories are shown in the Fig. 8. The compu-
tation was made for nominal motor load and speed
(2850 rev·min−1). The motor parameters are listed in
App. A.

4. Electromagnetic Torque
Calculation

Electromagnetic torque of IM can be determined from
the stator or rotor current values according to the for-
mula [18] and [19]:

Mem =
5

2
p (ψ1αi1β − ψ1βi1α) =

=
5

2
p (ψ2αi2β − ψ2βi2α) .

(14)

By using phasors spatial relationship, the Eq (14)
comes into the form:

Mem =
5

2
p Im

(
ψ∗

1
i1

)
=

5

2
p Im

(
ψ

2
i∗2

)
. (15)
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Fig. 10: Electromagnetic torque waveform.

We can express the magnetic flux associated with the
stator and rotor in terms of inductance and current.
The relationship Eq. (15) changes into the following
form: [18]

Mem =
5

2
pLm Im (i1i

∗
2) . (16)
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The calculated time plot of the electromagnetic
torque waveform of the five-phase IM pentacle con-
nected and supplied by a rectangular voltage is shown
in Fig. 10. The motor is loaded by a nominal load
and works at 2850 rev·min−1. In the electromag-
netic torque waveform, the fifth harmonic component
is well visible. The ripple presents about 20 % of the
load torque. Torque magnitude is invariant with load
change.

5. Conclusion

The article discusses the electromagnetic torque calcu-
lation of the five-phase IM which is pentacle connected.
The motor is supplied by a five-phase VSI inverter with
rectangular output voltage. Mathematical model using
the space phasor theory in the complex plane was build.

In the calculated waveform of electromagnetic
torque, a huge five harmonic component is visible. This
one stays constant with a change in load. It varies only
with the shape of the supply voltage.
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Appendix A
AC Drive Parameters

Pn = 6.5 kW; Un = 5× 230 V/50 Hz;
nn = 2850 rev·min−1; p = 1;
R1 = 3.778 Ω; R′2 = 2.498 Ω;
Lm = 0.436 H; L1σ = 6.83 mH; L′2σ = 11.88 mH;
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