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Abstract. This paper presents a method for
capacitance scaling of Fractional Capacitor (FC) which
is implemented using Current Feedback Operational
Amplifiers (CFOA) based Capacitance Multipliers
(C Multipliers). The circuit facilitates the change
in FC value without changing component values in
R-C network used for FC modelling or fabricating
a new FC. The performance of the proposed circuit
is examined for non ideal effects of CFOA. Effective
impedance of scaled FC is examined through MATLAB
simulations. The functionality of the realized scalers is
verified using SPICE simulations where the FC is
modelled using domino RC ladder network. Simulation
results for impedance magnitude and phase responses
are presented for various scaling factors and are
compared with theoretical counterparts. The circuit
application of proposed FC scaler is demonstrated
through implementation of fractional order lossy and
lossless integrators; and may be extended to fractional
order filters, oscillators, controllers etc.
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1. Introduction

Monolithic integration of circuits and systems has wit-
nessed a tremendous boost due to continuous downsiz-
ing of device dimensions. Low frequency applications
such as sensing and subsequent processing of biomedi-
cal signals and integration of loop filter used in Phase
Locked Loop (PLL) could not be benefited from this
as these require large value capacitors. Researchers,

therefore, look for alternate schemes for placing a small
capacitor on-chip and use a multiplier circuit. Gyrator,
Generalized Impedance Converter (GIC), and Negative
Impedance Converter (NIC) are also used for tuning
of Capacitance multiplier (C multiplier) circuit. Such
C multiplier circuits have been deployed for appropri-
ate tuning of filters [1], [2], [3],[4], [5], [6], [7], [8], [9],
[10], [11], [12] and [13] oscillators [14], PLLs [15] and
series resonators [16]. Commercially available active
elements such as Operational Transconductance Am-
plifier (OTA) [17], [18] and [19] and Op-amp [1] and
[15] and AD 844 (CFOA) [20], and [21], [22] and [23]
based C multipliers are reported in the literature.

Besides this, researchers are also focusing on frac-
tional domain signal processing and generation appli-
cations especially in biomedical instrumentation and
control systems. Analogous to capacitor in integer or-
der circuits, the fractional order circuits use FC. The
impedance of FC with Capacitance value (Cα) and
non-integer order (α, 0 < α < 1) is given by (sαCα)

−1.

In the available literature, the FCs is modelled us-
ing various structures [24] such as passive Resistor-
Capacitor (RC) elements arranged in the form of
semi-infinite tree, domino ladder, nested ladder,
and symmetric network. Researchers have also ex-
plored FC emulators based on Metal Oxide Semi-
conductor/Complementary Metal Oxide Semiconduc-
tor (MOS/CMOS) [25] and OTA [26]. Few physi-
cal realizations of FC are also reported in [27], how-
ever, being in primitive stage these are not commer-
cially available. The desired value of FC for given
order α may be obtained by computing component
(R and C) values [24] or bias currents and capacitor
values [25] and [26] or by physical implementation of
specific FC [27].
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Tab. 1: Comparison on scaling methods of FC.

Ref. Active
element

No. of
active

elements

No. of
passive
element

FC Solution
Additional

circuit
required

Experimental
verification

[28] Op-Amp 2 4 Electrolytic
chemical process GIC No Yes

[29] Op-Amp 2 4 Domino
ladder network GIC No Yes

[30] OTA 4 1 RC ladder
network IIMC Impedance

inverter Yes

[31] ECCII 3–4 3 RC ladder
network

Synthetic
inductor

Impedance
inverter No

[32]
CCII/

ECCII/
VGA

1/ 2/ 1 6 RC ladder
network FDNR Impedance

inverter No

[33] VCA 1 3 RC network FDNR Impedance
inverter No

[34] OTA 4 0 RC network Gyrator Impedance
inverter No

[35] OTA 17 5 Active simlation
of RC network SFG No No

Proposed CFOA 1–2 2 RC ladder
network FC scaler No Yes

ECCII: Electronically Controllable CCII
VGA: Variable Gain Amplifier
VCA: Voltage Controlled Gain Amplifier
SFG: Signal Flow Graph
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Fig. 1: (a) CFOA symbol and (b) its non-ideal model.

Any change in the FC value is a tedious task as
it requires either recomputation of the component or
bias current values or calls for a new physical realiza-
tion. The capacitance scaling may be achieved using
GIC [28] and [29] and Inverted Impedance Multiplier
Circuit (IIMC) [30] topologies. These, however, use
large number of passive elements and/or active blocks.
Therefore, FC scaling through Capacitance multiplier
(C multiplier) is examined in this work as an alternate
solution and compared with other scaling methods hav-
ing different forms of FC component Tab. 1.

This paper is organized as follows: Sec. 2. presents
proposed CFOA based capacitance multiplier circuit
having different form of scaling factors. It also in-
cludes investigation of impact of FC order and scaling
factor of multiplier circuits on impedance values. The
resulted impedances are also compared with unscaled
normal capacitor. Section 3. illustrates non-ideal ef-

fect on Fractional Order (FO) capacitance scalers. The
performances of realized scalers with applications are
demonstrated by simulation and experimental results
in Sec. 4. and Sec. 5. , respectively. Section 1. is
the conclusion part.

2. CFOA Based C Multiplier
Circuit

In this section, capacitance scaling of FC using CFOA
based C multiplier circuits is presented. The symbol
and equivalent non-ideal model of CFOA are shown in
Fig. 1. Its terminal characteristics can be described by
Eq. (1):

IY = 0, VX = VY , IZ = IX , V0 = VZ , (1)
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Fig. 2: CFOA based FC scaling circuits.

where VX , VY , VZ , VO and IX , IY , IZ , IO correspond
to voltages and currents at X, Y , Z, O-terminals,
respectively. In practice, the terminal characteristics
may deviate from Eq. (1) due to non-idealities which
appear in form of tracking errors and parasitic ele-
ments. The modified terminal characteristics are given
as:

IY =

(
sCY +

1

RY

)
VY = YY VY ,

IZ = αcIX +

(
sCZ +

1

RZ

)
VZ = IX + YZVZ ,

VX = βvVY + IXRX , V0 = γvVZ ,

(2)

where αc, βv, γv correspond to current and volt-
age transfer gains due to tracking errors. Parasitic
elements appear in form of resistance RX , parallel
resistance capacitance combination RY // CY and
RZ // CZ at terminals X, Y , and Z, respectively.

Figure 2 shows proposed CFOA based FC scaling
circuits. The topologies in Fig. 2(a), Fig. 2(b), and
Fig. 2(c) are realized by generalizing C multipliers re-
ported in [23] while topology in Fig. 2(d) is obtained
using topology reported in [36]. Routine analysis of the
circuits in Fig. 2(a), Fig. 2(b), Fig. 2(c), and Fig. 2(d)

yields in the following impedance functions:

Zin1 (s) =
1

sα
(
1− R2

R1

)
Cα

,
(3)

Zin2 (s) =

(
1 +

R2

R1

)
sαCα

,
(4)

Zin3 (s) =
1

sα
(
1 +

R2

R1

)
Cα

,
(5)

Zin4 (s) =

(
1− R2

R1

)
sαCα

,
(6)

where order α of FC provides −απ · 2−1 phase shift,
therefore α = 0.5 has −45◦ phase shift.

Equations (3), Eq. (4), Eq. (5) and Eq. (6) show
that FC is scaled by factors Ki (i = 1, . . . , 4) where
K1 = (1 − R2 · R−1

1 ), K2 = 1/(1 + R2 · R−1
1 ),

K3 = (1 +R2 ·R−1
1 ), and K4 = 1/(1−R2 ·R−1

1 ).

It may be observed that the impedance functions of
realized scalers are majorly influenced by two factors
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Zin1(s) |n=
1

YY + sαCα

[
1− αcβv

(R1 +RX) (G2 + YZ)

] ,
(7)

Zin2(s) |n=
1

YY + sαCα

[
1− αcβvγv

(R1 +RX) (G2 + YZ) + αcγv

] ,
(8)

Zin3(s) |n=
1

YY 1 + sαCα

[
1 +

αc1αc2βv1

(R1 +RX1) (1 +RX2YZ1) (G2 + YZ2)

] ,
(9)

Zin4(s) |n=
1

YY 1 + sαCα

[
1 +

αc1αc2βv1γv2
(R1 +RX1) (1 +RX2YZ1) (G2 + YZ2 − αc1αc2γv2)

] .
(10)

(i) α, and (ii) R2 ·R−1
1 . To achieve higher scaling fac-

tor, larger resistor ratio (R2 ·R−1
1 ) is needed for topolo-

gies in Fig. 2(a) and Fig. 2(c) whereas similar results
may be obtained by selecting R2 · R−1

1 closer to unity
for topology in Fig. 2(d). Further, all the topologies
show an increasing trend in impedance for decreasing
α (α < 1) for fixed resistor ratio.

MATLAB simulations for change in impedance mag-
nitude with respect to (w.r.t.) α and (R2 · R−1

1 ) for
circuits in Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d)
are demonstrated in Fig. 3(a), Fig. 3(b), Fig. 3(c) and
Fig. 3(d). It is useful to examine the effect of com-
bined variation of α and (R2 · R−1

1 ). The change in
impedance magnitude value is calculated from its orig-
inal impedance value and plotted against α and resistor
ratio as shown in Fig. 3.

To examine the cumulative effect of variation of
α and R2 · R−1

1 on change in impedance magnitude,
MATLAB simulations are carried out for circuits of
Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d) and cor-
responding results are plotted in Fig. 3(a), Fig. 3(b),
Fig. 3(c) and Fig. 3(d). Here % change of |Z| is cal-
culated from original value w.r.t. α and resistor ratio.
The simulation results corroborate with the theoreti-
cal results. It may be noted that smaller α values have
larger impact on impedance magnitude for a resistor
ratio R2 · R−1

1 , i.e. close to unity for Fig. 2(a)/ much
larger than unity for Fig. 2(b)/ negligible for Fig. 2(a),
Fig. 2(b), Fig. 2(c) and Fig. 2(d).

3. Non-Ideal Analysis of FC
Scalers

To analyse the behaviour of proposed circuits in pres-
ence of CFOA non-idealities (Fig. 1(b)), the input

impedance functions of topologies of Fig. 2 are recom-
puted as Eq. (7), Eq. (8), Eq. (9) and Eq. (10), where
subscript n corresponds to nonideal; and subscripts
1 and 2 with current transfer gain

(
αc1,2

)
, voltage

transfer gains (βv, γv); and parasitics, YY , RX , YZ

correspond to CFOA1 and CFOA2.

It may be noted from the graphs in Fig. 2(a),
Fig. 2(b), Fig. 2(c) and Fig. 2(d) that Y-terminal
of CFOA/CFOAs is either connected to input or to
ground, therefore the performance remains unaltered
due to parasitic associated with this terminal. The
parasitic at X terminal of CFOA may be accommo-
dated by adjusting the value of external resistor con-
nected to it. The overall impact of CFOA parasitic el-
ements on FC scaler behaviour may be ignored by con-
sidering the frequency of operation much below than
parasitic pole associated with Z terminal. Therefore,
(Ki, i = 1, 2, 3, 4) for topologies of Fig. 2(a), Fig. 2(b),
Fig. 2(c) and Fig. 2(d) are recomputed as:

K1 |n= 1− αcβv
R2

R1
, (11)

K2 |n=
1 +

(
αcγv − αcβvγv

R2

R1

)
1 + αcγv

R2

R1

, (12)

K3 |n= 1 + αc1αc2βv1
R2

R1
, (13)

K4 |n=
1−

(
αc1αc2γv2 − αc1αc2βv1γv2

R2

R1

)
1− αc1αc2γv2

R2

R1

. (14)

The parasitic effects of CFOA based FC multipliers
(Fig. 2) are demonstrated using SPICE simulation re-
sults as shown in Fig. 5. The typical values of parasitic
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Fig. 3: Percent change in impedance magnitude with respect to α and R2 ·R−1
1 .

impedances of CFOA are Rx = 50 Ω, RY = 2 MΩ,
CY = 2 pF, RZ = 3 MΩ, CZ = 4.5 pF. It is clear
that the parasitic element on X-terminal affects mag-
nitude responses more with maximum errors of 3 dB,
−1.18 dB and −4.14 dB for the circuits of Fig. 2(a),
Fig. 2(b), Fig. 2(c) and Fig. 2(d), respectively in the
operational frequency range of α order FC while it pro-
duces −0.6 dB magnitude error with Y and Z-terminal
parasitic elements of Fig. 2(b). The phase responses of
FC multipliers as shown in Fig. 2(a) and Fig. 2(b) are
more influenced by the parasitic of Z-terminal at lower
frequency and Y-and X-terminals at higher frequency.
Whereas the (Y-, X-) and (Y-, Z-) terminals parasitic
elements have a few more effect on the phase responses
of Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d), respec-
tively.

4. Application and Simulation
Results

The functionality of the realized scalers is verified us-
ing SPICE simulations using CFOA model [37]. The
FC is implemented using infinite order domino RC lad-
der network truncated Fig. 4 to 12 blocks [38]. The
component values of FC model having α = 0.5 and
Cα=3.75 µF·s−0.5 are R0 = 330 kΩ, R1 = 82 kΩ,
R2 = 33kΩ, R3 = 12 kΩ, R4 = 4.7 kΩ, R5 = 2 kΩ,
R6 = 736 Ω, R7 = 270 Ω, R8 = 120 Ω, R9 = 47 Ω,
R10 = 8.2 Ω, R11 = 18.2 Ω, C0 = 4.7 µF, C1 = 3.1 µF,

C2 = 1 µF, C3 = 470 nF, C4 = 168 nF, C5 = 68 nF,
C6 = 27 nF, C7 = 10 nF, C8 = 4.7 nF, C9 = 1 nF,
C10 = 2.2 nF.

R
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R
1

C
1

R
2

C
2

R
10

C
10

R
11

C
α

Fig. 4: Truncated RC domino ladder network realizing FC. [36]

Simulations are performed for different scaling fac-
tors for topologies in Fig. 2 for examining impedance
magnitude and phase response and corresponding re-
sults are depicted in Fig. 6. The excitation voltage is
set at 100 mV for the simulation results. The excitation
voltage is set 100 mV for the simulation results. Ta-
ble 2 enlists simulation setting for capacitance scaling
factors and component settings used therein and per-
formance of circuits. In the view of non-ideal effects
of CFOA on the realized circuits, it may be observed
that Fig. 2(b) and Fig. 2(c), have more linearity than
Fig. 2(a) and Fig. 2(d). In Fig. 2(a) and Fig. 2(d),
it increases the range of operation for lesser value of
R2 ·R−1

1 .

To illustrate the use of proposed scaler, CFOA based
lossy/lossless integrator circuit is constructed as shown
in Fig. 9. The notation Cαeff indicates the effective
capacitance value of FC (that is Cαeff = Ki · Cα).
The transfer functions of lossy and lossless fractional
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Fig. 5: The magnitude and phase errors for (a) Fig. 2(a), (b) Fig. 2(b), (c) Fig. 2(c) and (d) Fig. 2(d).
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Fig. 6: Simulated impedance magnitude (a) – (d) and phase (e) – (h) responses for circuits of Fig. 2(a), Fig. 2(b), Fig. 2(c) and
Fig. 2(d).
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Fig. 7: Magnitude (a, b) and phase (c, d) responses of fractional lossy and lossless integrators for multiplication factor < 1.
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Fig. 8: Magnitude (a, b) and phase (c, d) responses of fractional lossy and lossless integrators for multiplication factor > 1.
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Tab. 2: The components values and performance of FO capacitance scalers.

Components setting and
performance evaluation Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

Multiplication
factor 0.02 0.1 0.5 0.02 0.1 0.5 2 10 50 2 10 50

R1 (kΩ) 1 1 1 1 1 1 1 1 1 1 1 1
R2 (kΩ) 0.98 0.9 0.5 49 9 1 1 9 49 0.5 0.9 0.98

(Cα)effF (υ/sα) 75 n 0.375 µ 1.875 µ 75 n 0.375 µ 1.875 µ 7.5 µ 37.5 µ 187.5 µ 7.5 µ 37.5 µ 187.5 µ

Frequency range of
magnitude response (Hz)
(within 1.5 dB deviation)

0.05–
50.1 k

0.04–
330 k

0.042–
588 k

0.046–
392 k

0.042–
1 Meg

0.042–
935 k

0.04–
625 k

0.04–
676 k

0.04–
741 k

0.042–
970 k

0.052–
218 k

1.4–
14.8 k

Frequency range of
phase response (Hz)

(within 2.5◦ deviation)

13.3–
6 k

0.44–
53 k

0.43–
426 k

0.57–
44 k

0.45–
107 k

0.42–
525 k

0.4–
202 k

0.4–
154 k

0.4–
120 k

0.44–
28 k

4.6–
14.5 k

19.5–
3 k
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Fig. 9: CFOA based fractional (a) lossy and (b) lossless integrators.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s) 10
-3

-0.15

-0.1

-0.05

0

0.05

0.1

V
o
lt

ag
e 

(V
)

V
in

V
out

Fig. 10: Transient responses of fractional lossy integrator.

integrators can be expressed as follows:

Tα
lossy =

Vo (s)

Vin (s)
= −R2

R1
· 1

1 + sαR2Cαeff
, (15)

Tα
lossless =

Vo (s)

Vin (s)
= − 1

sαR1Cαeff
. (16)

The simulated magnitude and phase responses of
fractional order lossy/lossless integrators using 0.5 or-
der FC scaler of Fig. 2(b) and Fig. 2(c) with scaling
factors of (0.02, 0.1, 0.5) and (2, 10, 50) are depicted
in Fig. 7 and Fig. 8, respectively. It may be observed
that the simulated magnitude responses for lossy and
lossless integrators follow theoretical values with de-
viations of (0.45 dB, 0.7 dB, 1.5 dB) and (0.6 dB,

0.8 dB, 1.5 dB) up to frequencies (478 kHz, 1.58 MHz,
2.7 MHz) / (380 kHz, 457 kHz, 1.7 MHz) and (1.5 kHz–
346 kHz, 165 Hz–660 kHz, 2.8 Hz–891 kHz) / (410 kHz,
483 kHz, 1.7 MHz) for scaling factors (0.02, 0.1, 0.5)
/ (2, 10, 50), respectively. Further, phase deviations
are well within 2.5◦ for frequencies up to (190 kHz,
200 kHz, 295 kHz) / (370 kHz, 280 kHz, 215 kHz) for
lossy integrator and that for lossless integrator in the
frequency range of (7.2 kHz–64 kHz, 1 kHz–94 kHz,
186 Hz–234 kHz) / (5.6 Hz–343 kHz, 3.3 Hz–278 kHz,
0.43 Hz–214 kHz). The transient response of fractional
lossy integrator circuit is shown in Fig. 10 where input
100 mV amplitude and 1 kHz frequency sinusoidal sig-
nal is applied. The output is plotted for K3 = 10,
which verifies phase difference of −5.5◦ closer to −34◦

theoretical value.
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Fig. 11: Experimental setup for FO lossy integrator circuit.
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Fig. 12: Impedance phase response of 0.5 order FC.

5. Experimental Verification

The realization of FC having α closed to 0.5 and
Cα = 3.75 µF/sα using infinite RC ladder network
is considered for experimental verification. The com-
ponents values of ladder network (Fig. 4) are R0 =
330 kΩ, R1 = 82 kΩ, R2 = 33 kΩ, R3 = 12 kΩ,
R4 = 4.7 kΩ, R5 = 2 kΩ, R6 = 736 Ω, R7 = 270 Ω,
R8 = 120 Ω, R9 = 47 Ω, R10 = 8.2 Ω, R11 = 18.2 Ω,
C0 = 4.7 µF, C1 = 3.1 µF, C2 = 1 µF, C3 = 470 nF,
C4 = 168 nF, C5 = 68 nF, C6 = 27 nF, C7 = 10 nF,
C8 = 4.7 nF, C9 = 1 nF, C10 = 2.2 nF. The impedance
phase response of FC is plotted as shown in Fig. 12.
The impedance phase value of FC (Fig. 4) is calculated
with phase differences between FC and R11 using two
voltage probes of oscilloscopes.

The experiment is performed using commercially
available AD844AN (CFOA). The hardware setup for
FO capacitance scalar, FC, and lossy integrator circuits

(Fig. 2(c), Fig. 5, and Fig. 6) is shown in Fig. 11. The
approach to test the characteristics of Fig. 2(c) em-
ploying Fig. 9 is implemented for multiplication factor
K3 = 3.2 (R1 = 1 kΩ and R2 = 2.2 kΩ), order α = 0.5
and capacitance Cα = 3.75 µF/sα of FC (the used
component values as given in Sec. 4. ).

The component values of lossy integrator
(R1 = 0.22 kΩ and R2 = 1 kΩ) provides dc gain
equals to 13.15 dB and its response is shown in
Fig. 13. The performance is observed for sinusoidal
input supply Vpeak−peak = 1 V at 100 Hz, 1 kHz,
and 10 kHz frequency points. Figure 13 also shows
the responses of sinusoidal input and their Lissajous
figures. The dc supply voltage in CFOA is fixed at
±8 V. Moreover, Fig. 13 displays gain of 10 dB, 8 dB,
2.4 dB and phase of 1730, 1640, 1530 where calculated
gain = 11.34 dB, 8.03 dB, 1.6 dB and phase = 1700,
159.10, 145.80 at corresponding 100 Hz, 1 kHz, 10 kHz
frequency points. Thus, it can be stated that the
experimental work verifies the theoretical study.
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Fig. 13: Responses (channel 2) of Fig. 9 choosing dc gain = 13.15 dB for sinusoidal input (channel 1) at (a) 100 Hz, (c) 1 kHz,
and (e) 10 kHz frequency points and (b, d and f) their Lissajous pattern.

6. Conclusion

Four fractional capacitance scaler topologies obtained
through generalization of CFOA based capacitance
multipliers are presented in this paper. The effect of
non idealities of CFOA on proposed scalers is investi-
gated. Functionality of these scalers is tested through
MATLAB and SPICE simulations for various scaling
factors. The application of proposed scaler is illus-
trated through fractional order lossy and lossless in-
tegrators.
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