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Summary In the past the reliability of the telecommunication system was evaluated on the simple assumption of the independence
of elements. Computation of steady — state series — system availability depends on specific assumptions made about the non failed
items during the system failure. In the article is more exact method of caleul global reliability with consideration of various regimes

of maintenance.

1. INTRODUCTION

In  telecommunication  systems  (namely  in
telecommunication network) very often occur the calcul
of reliability series elements evaluated by availability.
Steady/state  availability  (also  called: limiting
availability) is defined as the long-term fraction of time
that an item is available.

When a series systems fails due to the failure of any one
of its components, all the other components take a rest
and are therefore not at risk of failure.

In the text will be used the following notation:

$ statistical (ly)

n number of components in the series — system
A failure rate of component i

1 repair rate of component

a; WA A+w), =1, 2, .. wm steady — state
availability of component

Agys system steady - state availability

@ system matrix of transition rates between states
Sa system operating state

hY system state, item is failed; i>0

Di steady — state probabilities of state

P vector of p;

2. ASSUMPTIONS

1) Failure of any item in the series constitutes failure
of the system (definition of series in reliability
terms).

2) At system failure as defined in #1, all other items in
the series stop, and cease to be at risk of failure
until the failed item is restored and system is re-
started.

3) Steady - state availability of an item is the ratio of
running time, (same for all items) to: “running
time” plus “failure ~ repair time”, (different for
each item), over a long, theoretically infinite,
period. System free time does not enter the
calculations.

4) The maintenance policy for all items is fixed for the
period of data collection upon which the estimates
of item steady — state availability are based. The
policy can be failure — only.

5) Items in this context can be complex assemblies or
simple parts. The theoretical basis changes but the
practical results does not).

3. MODEL DESCRIPTION

Consider a series — system of »n s-independent
components, i. e, a failure of any component causes a
system failure [1], [2].

Case — 1: Non-failed components with an operational
state during repair.

Components are repaired immediately at failure while
other non-failed components continue to operate, or at
least remain energised, and can fail (and hence, age)
during the repair of the original failed components. The
steady — state availability for a series — system of n s-
independent components is the product of the
component availabilities.
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Case — 2: Non-failed components with a switch-off
during repair.

Components are repaired immediately at failure while
other non-failed components are also immediately taken
out of operation, or at least switched-off and cannot fail
(therefore do not age) until the failed component (s) is
repaired.

A series system with constant A;, L, can be represented
by a matrix of conditional rates of change of state from
S (row) to S; (column), as
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The p;, i=0, 1, ... n for a system represented by a matrix
such as (2), having no absorbing state can be found
from:

Px @=10, Zpi =1 . (3)
In this ﬁim[i(@](f; ‘4‘4;[_‘;){)3,:!(“1)‘,‘ for all fﬁf, 2, ven H, and b}’

solving the simultanecus equations which are the
expansion of (3):
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For example for two elements is:
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It can be proved that for n=] A, after equation (1) is
equal after equation (5) and for n>7 A,,, after equation
(1) is less as after equation (5).

4. CONCLUSION

It was discovered the importance of the difference
between the “product rule” after equation (1) and the
“correct series availability” after equation (5).

Compare the result for 400 items in series all of steady
state availability 0,999. For such a system that operates
continuously if available, the best way to perceive the
practical difference is as: 350 hours/year of system
operation, which the product - rule system would be
downtime. The items in a practical system would not
have availabilities all of the same order of magnitude.
The effect of even a few items with availabilities of 0,99
rather than 0,999 renders the difference unimportant,
but those are the ones that should attract redundancy.

In the next work will be interessant to take in
consideration economical cost of items.
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