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Abstract. Objective quality assessment models have
been used more and more in recent years to assess or
monitor speech and audio quality in many multime-
dia and audio processing systems. These methods offer
a clear and repeatable way to evaluate a customer ex-
perience by measuring perceived quality on a subjective
scale, which is easily understood, such as a quality rat-
ing scale, ranging from excellent quality to a low qual-
ity. Subsequently, the aim of service providers is to
offer reliable services providing the end-user/customer
with the best possible quality in the context of the cur-
rent network conditions to avoid a customer churn.
This paper presents a design and performance evalua-
tion of parametric models estimating the audio quality
experienced by the end user of broadcasting systems and
web-casting applications. The Random Forest (RF)
algorithm is used to design non-intrusive parametric
models, establishing the relationship between the fea-
ture description and the perceived quality scores. For
this, the broadcast and web-cast sub-databases were cre-
ated, where the web-cast sub-database includes 17,280
degraded samples and the broadcast sub-database con-
tains 1,080 degraded samples obtained from the Slovak
Radio. The results reported for the proposed paramet-
ric audio quality models have validated Random Forest
as a powerful technique that provides a good efficiency
in terms of Pearson Correlation Coefficient (PCC) and
Root Mean Squared Error (RMSE).
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1. Introduction

The substantial development in broadcasting and net-
working technologies in recent decades reflects the
range of digital audio transmission systems, such as
Digital Audio Broadcasting (DAB) [1] and [2], Digi-
tal Radio Mondiale (DRM) [3] and [4], etc., or web-
casting applications using TCP as a transport proto-
col [5]. On-demand streaming media such as Spotify,
Deezer, iTunes, Amazon Music or YouTube Music are
among the most common audio streaming services [6].
The streaming service, as well as the broadcasting sys-
tems, use audio codecs to minimize bandwidth to be
used for the corresponding data transmission. Due to
the robustness and reliability of the channel coding of
today’s digital audio transmission systems, the audio
codec is still the key source of quality degradation in
this case. The same is true for the web-casting appli-
cations as they dominantly deploy the TCP on a trans-
port layer [7]. Given that most of today’s web-casting
applications are based on HTTP streaming [8], addi-
tional quality influencing factors, in this case, are an
initial delay and a stalling [5]. The creation of effective
quality monitoring tools operating in real-time that can
measure the audio quality experienced by the end user
is therefore important for the success of any audio ser-
vice or application.

In order to get a clear picture about the deployment
of codecs in the context of digital audio broadcast-
ing systems and web-casting applications, we compiled
a list of the currently most widely used codecs and their
bit rates [9], which is presented in Tab. 1. As it can
be clearly seen from this table, MP2 and HE-AACv2
codecs are mostly used when it comes to broadcast-
ing systems. On the other hand, the most widely used
codecs for web-casting applications are MP3, Ogg Vor-
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bis, AAC-LC, Opus but also lossless codecs such as
ALAC and FLAC.

Tab. 1: List of codecs that are used in digital audio broad-
casting systems and web-casting applications (Adopted
from [7] and updated).

Codec Bit rate (kb·s−1) Applications
MP2 64, 80, 128, 160, 192 DAB

HE-AACv2 24, 32, 40, 48, 56,
80, 96, 112, 128

DAB+, DRM,
DRM+, DMB,
Web streaming,
Deezer, Spotify

MP3 64, 80, 128, 160,
192, 256, 320

Web streaming,
Deezer, iTunes

Ogg Vorbis 64, 96, 160, 320 Web streaming,
Spotify

AAC-LC

Apple: 96, 128,
256, 320 Web streaming,

Wimp, ISDB,
iTunes, SpotifyNero: 32, 96, 128,

196, 256
Opus 32, 64, 96, 128, 320 Web streaming

The evaluation of audio quality can be performed
from either a subjective or an objective perspective
[10]. A subjective listening test is a common way of
determining the quality of the audio. Subjective meth-
ods that are based on the empirical listening measures
defined under international guidelines, e.g. [11] and
[12], are more effective but also more arduous and time-
consuming. On the other hand, methods for objective
assessment of the audio quality are more convenient.
To be more precise, objective perceptual audio mod-
els are used to reliably and rapidly predict the MOS
(Mean Opinion Score) values, i.e., scores representing
a quality perceived by the end user.

Generally, objective quality assessment models de-
ploy two approaches [10]:

• intrusive,

• non-intrusive.

Calculating the perceptually weighted difference be-
tween the reference and degraded signals is the basic
concept of intrusive quality metrics. Intrusive methods
are considered more accurate as they provide a higher
correlation with subjective evaluations. Intrusive de-
signs in the sense of audio quality, e.g., PEAQ [13],
PEMO-Q [14], ViSQOLAudio [15] or POLQA Music
[7], expect a qualitative evaluation of the degraded sig-
nal distortion by contrasting the degraded signal with
the initial/reference signal. So, intrusive measures re-
quire the presence of the original signal that is typically
not available in continuous quality monitoring.

Moreover, despite the fact that intrusive methods
[16] are based on the very hard to realise time syn-
chronization of the two signals, they are still a more
reliable counterpart with non-intrusive methods for ob-
jective quality evaluation of audio [16]. Non-intrusive

approaches depend on the receiving side processing
of the audible signal, without exposure to the origi-
nal audio signal on the broadcast/web-cast side, which
leads to some difficulties in detecting distortion caused
by communications networks, i.e., loss of packets.
Non-intrusive approaches may be categorized as either
signal-based or parametric algorithms [16].

Nevertheless, there is, to the best of our knowledge,
currently no non-intrusive parametric model for the au-
dio quality estimation that focuses on the broadcast-
ing systems and web-casting applications despite the
fact that these models are already available for speech
transmission, i.e., E-model [17], and a broadcast audio
contribution over IP [18] and [19] or an audio-visual
media streaming [20]. Hence in this paper, we pro-
pose non-intrusive parametric audio quality estimation
models based on machine learning for the broadcast-
ing systems and web-casting applications. The pro-
posed models formulate an estimate of audio quality
as a regression problem and use the RF approach to
find a mapping between the audio features and quality
score.

The paper is organized as follows. In Sec. 2. ,
we explain an experimental methodology and models
input parameters for broadcasting systems and web-
casting applications. Section 3. specifies how the
database was built to be used to train and validate
the proposed models. We then present our proposed
non-intrusive parametric quality estimation models,
training, and testing phase details in Sec. 4.
Section 5. describes the performance evaluation re-
sults of the proposed models. Finally, in Sec. 6. ,
we conclude the paper and discuss possible future re-
search.

2. Methodology

In this work, we used Random Forest (RF) as a ma-
chine learning technique. Random Forest is a part
of the supervised learning methods family [21]. The
ecosystem it creates is an ensemble of decision trees [22]
and is usually fitted with the bagging cycle. The fun-
damental theory of bagging methodology is that a com-
bination of learning types increases the combined per-
formance. In that, the size of the forest and the vari-
ation between the trees’ outputs are minimized. The
forest’s prediction is the average prediction from indi-
vidual trees [23]. By running the algorithm on a broad
training sample and then ranking these scores against
new results, the classification is accomplished. The
main aim, of course, is to consider the numerical or
logical relationship between the input parameters and
performance during the training process.
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2.1. Models Input Parameters

We concentrated here on input parameters that could
reduce the audio quality of broadcasting systems. As
mentioned above, the principal degradation parameter,
in this case, is an audio codec. Based on [7], [9] and
[24], we also considered the need to take into account
a type of signal and bit rate. The corresponding pa-
rameters have been used along with the MOS values for
training by the Random Forest approach, as illustrated
in Fig. 1. The same degradation parameters are used
for web-casting applications, see Fig. 2 for more detail,
but certain parameters of the application layer have
also to be taken into consideration [25], [26], [27], [28]
and [29]. An initial delay in audio reproduction is the
first of them. The initial delay often occurs since a cer-
tain amount of data must be transferred to a receiving
side before decoding and playing are going to be initi-
ated. The minimum value for the initial delay depends
on the bit rate and encoder settings [5]. Another input
degradation parameter that has a significant effect on
the perceived audio quality in web-casting applications
is stalling [5]. It occurs when actual network through-
put is lower than an audio bit rate required by the
corresponding streaming service, and a buffer is there-
fore drained. The effect of the initial delay and stalling
on the perceived output generally depends only on its
duration.

Fig. 1: Diagram of the proposed parametric prediction model
for broadcasting systems.

Fig. 2: Diagram of the proposed parametric prediction model
for web-casting applications.

To sum up, the following input parameters have been
considered in a design phase of non-intrusive paramet-
ric audio quality estimation models for broadcasting
systems and web-casting applications:

• Broadcast – the type of audio codec, type of signal,
bit rate.

• Web-cast – the type of signal, type of audio codec,
bit rate, stalling, initial delay.

3. Database

Before creating the database, it was necessary to spec-
ify all the types of sounds that we had to focus on.
We sought to reach as large audio signal spectrum as
possible. The goal was to create the largest avail-
able archive of specific recordings that would repre-
sent the audio variety transmitted to the listener over
broadcasting systems and web-casting applications. To
do so, we obtained 3 hours long uncompressed stu-
dio recording from Slovak Radio to create a dataset
that will be used for training and testing of the de-
signed estimation models. However, it did not contain
all the pre-selected audio signals like classical music,
a spoken word in a foreign language, a track featur-
ing only one musical instrument, etc. For that reason,
we have added a part of the respectable EBU SQUAM
database that includes lossless recordings for subjec-
tive audio quality testing. A version published in EBU
Tech 3253 [30] was used. In terms of complexity, the
resulting set includes 27 types of audio signals typically
deployed in the context of audio broadcasting systems
and web-casting applications. It can be divided into
two principal categories, music and speech, at a ra-
tio of 12 (music) and 15 (speech). Each recording is
roughly 10–15 seconds long and sampled at 48 kHz.

For further work with the database, it was neces-
sary to evaluate the audio quality of the selected sig-
nals, characterizing the typical content of the current
audio broadcasting systems and web-casting applica-
tions, degraded by the codecs currently deployed by
the corresponding systems and applications. In this
case, the default codec settings were deployed besides
the bit rate, which was manipulated according to the
values presented in Tab. 1. We have chosen POLQA
Music [7] model to assess a quality perceived by the
end user when it comes to the degradations caused by
the audio codecs, as this model, according to [7], was
fairly reliable in this regard. It should be noted here
that the POLQA Music V2 model was used in this
case, see [7] for more information. The total number
of combinations resulting from this process was 1080.
These 1080 samples, together with the corresponding
MOS values predicted by the POLQA Music model,
represented a broadcast sub-database and were later
used to build a web-cast sub-database covering the ad-
ditional degradations, i.e., initial delay and stalling.
As these two types of degradations are different in na-
ture, i.e., frequency and time domain, in this case, we
can apply the additivity concept that comes from the
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E-model [17]. Since POLQA Music was not trained for
degradations induced by the initial delay and stalling,
we used the following equations published in [27], fo-
cusing on the effect of initial delay and stalling in the
context of the audio transmission, to cover the impact
of these two parameters on the quality experienced by
the end user in the context of the model design:

f (TInit) = 5− (−0.5853 log (TInit + 1.3561) + 5) , (1)

f (TStall) = 5−
(
3.3522e−0.6973·TStall + 1.5059

)
, (2)

where TInit represents the duration of the initial de-
lay and TStall represents the duration of the stalling.
In order to reflect real-world conditions, we have used
the real-world measurements presented in [25] and [26]
to select the values of initial delay and stalling to be
used in the design process of the proposed models. The
values, together with the corresponding quality degra-
dations incurred by the initial delay and stalling, are
listed in Tab. 2.

Tab. 2: The initial delay and stalling values used in the model
design.

Type of
audio signal
degradation

Duration of
degradation (s)

The value by which
the original MOS

is reduced

Initial delay
2 0.30777
8 0.56838
24 0.82188

Stalling
1 1.82494
3 3.08026
6 3.44301

To create the web-cast sub-database, we have ex-
tended the broadcast sub-dataset with the MOS val-
ues that cover the impact of initial delay and stalling
on the quality perceived by the end user. It is neces-
sary to note here that a combined impact of the initial
delay and stalling was also considered while creating
the web-cast sub-database. So, in total, we applied
15 cases, i.e., three initial delay cases (see Tab. 2 for
more detail), three stalling cases (see Tab. 2 for more
detail) and their nine combinations, to each of the pre-
vious 1,080 MOS samples representing the broadcast
sub-database. Together, we obtained 17,280 MOS val-
ues defining the web-casting dataset. It is worth noting
here that the database is available upon request to al-
low reproducibility of this research as well as support
new research/development activities in this context.

4. Proposed Technique

In this work, we used a machine learning method,
namely Random Forest (RF) [21] for regression prob-
lem to predict audio quality for broadcast systems and
web-cast applications. The random forest can be ap-
plied to all kinds of regression applications. Random

regression forests are based on regression trees that
lead to a minimization of variance within the node in
the splitting process [21]. A decision tree is the build-
ing block of a random forest and is an intuitive model
[21]. Instead of learning a simple problem, we will use
a real-world dataset split into a training and testing
set. In a random forest, a large number of trees is built
from a random selection of a small number of variables
and a random selection from the observations. The
forest prediction is the average prediction from indi-
vidual trees. Each individual tree predicts a step func-
tion. Even the average number of trees can approach
almost any functional form and can automatically ac-
count for interactions between regressors. The most
widely used variable importance metric for regression
forests is permutation-based MSE (Mean Squared Er-
ror) reduction [23].

4.1. Training and Prediction Details

The sub-databases were divided into two parts at
a ratio of 80:20, i.e., the training and testing data.
It is worth noting here that when it comes to machine
learning approaches, this ratio is often implemented.
We pseudo-randomly selected the test cases/samples,
attempting to cover all the types of signals, all the
codecs and their bit rates at the same ratio. The test-
ing samples were naturally not involved in the train-
ing database. The 240 MOS values for broadcast and
3,456 MOS values for web-cast were used for the test-
ing phase to verify the performance of the designed
parametric estimation models. The MOS values pro-
vided by the designed models were compared to the
ground true MOS values. The efficiency of the con-
structed parametric estimation models was quantified
in terms of the Pearson Correlation Coefficient (PCC)
and the respective Root Mean Square Error (RMSE)
widely used in this context.

5. Results

To solve the regression problem, we used the
existing random forest algorithm included
in the Scikit-Learn Python library, namely
"sklearn.ensemble.RandomForestRegressor" with
the following parameters: the number of trees was
set to 100, the random state was set to 50, maximum
depth of the tree was set to default, i.e., "None",
a minimum number of samples to split was set to 5,
and a minimum number of samples required to be at
a leaf node was set to 4. We ran 15 simulations for
each sub-database with different initial seeds. The
best results were noted and are going to be presented
in this section. We compared the MOS values provided
by the parametric prediction models with the true

© 2020 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 238



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 18 | NUMBER: 4 | 2020 | DECEMBER

MOS values of the test sets. The scatter plot of the
true MOS values versus the predicted MOS values of
the test samples obtained from the proposed models is
shown in Fig. 3 for the broadcast sub-database and in
Fig. 4 for the web-cast sub-database. Table 3 shows
the best outcomes obtained from all the simulations in
terms of the above-mentioned performance measures.
The results show that the Random Forest method is
relatively successful in both cases, i.e., the broadcast
and web-cast conditions. To be more precise, for the
web-cast conditions, we reached the PCC of 0.9854
and the RMSE of 0.2192; for the broadcast conditions,
it is a bit worse with the PCC of 0.9411 and the
RMSE of 0.1951, respectively.

Fig. 3: Scatter plot of the true MOS values against the pre-
dicted MOS obtained by the Random Forest approach
for the broadcast conditions.

Tab. 3: Best results obtained by the Random Forest approach.

Sub-database Broadcast Web-cast
PCC 0.9411 0.9854

RMSE 0.1951 0.2192

We also measured a computational load for both
model types. The estimation computational load
for the broadcast and web-cast sub-database is
0.0655 s and 0.2855 s respectively. All the simu-
lations were carried out on a 64-bit quad-core pro-
cessor based on the Kaby Lake H Architecture,
Intel i7-7700HQ 2.8 GHz.

As we can clearly see from Fig. 3 and Fig. 4,
there are some outliers for both types of environments.
In the broadcast scenario, these outliers represent
mostly speech signals and are covered by MP2, Opus,
AAC-LC and HE-AAC (v.2) codecs at the lower bit
rates. On the other hand, in the web-cast scenario,

Fig. 4: Scatter plot of the true MOS values against the pre-
dicted MOS obtained by the Random Forest approach
for the web-cast conditions.

there is an even representation of individual types of
signals. Codecs that represent the largest share of out-
liers are MP2, AAC-LC, Ogg Vorbis, Opus and HE-
AACv2, again for the lower bit rates.

6. Conclusion

In this work, we designed the non-intrusive parametric
audio quality estimation models for broadcasting and
web-casting scenario respectively, which are based on
the Random Forest approach. The proposed models
use the set of the audio features to estimate the over-
all audio quality for broadcasting systems and web-
casting applications. When comparing the estimates
provided by the proposed parametric models with the
actual MOS values, we can conclude that the pro-
posed approach estimates the perceived audio quality
with a rather good accuracy. The developed paramet-
ric models can be implemented in monitoring systems,
so that the quality of sound transmission can be cal-
culated simultaneously on a large amount of connec-
tions. The future work will focus on the design of non-
intrusive parametric audio quality estimation models
based on other types of machine learning approaches,
e.g. shallow and deep neural networks.
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