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Abstract. For the purpose of improving the service
quality, video surveillance systems are widely used to
standardize the service process in power supply busi-
ness halls. If the employers check surveillance video to
ensure predefined process of staff behaviours, it will be
characterized as time-consuming. In recent years, great
progress has been made in intelligent action recognition
using Convolution Neural Networks (CNNs). However,
due to the small range of staffs’ motion and similar
scene information of power supply business halls, the
performance of using traditional CNNs to recognize ser-
vice actions, e.g. bowing, standing and sitting, is gen-
eral. For improving the recognition rate, this paper pro-
poses a 3D-fused Convolutional Network (ConvNet) for
service actions recognition, which focuses on detecting
the actions in the typical scene of one staff person and
one customer with a well-segmented video clip. The
well-segmented video clips are sent as input to the 3D-
fused ConvNet for action recognition. The 3D-fused
ConuvNet consists of two base learners, optical flow base
learner and RGB base learner. Both learners use the
Convolutional 8D (C3D) architecture. Specifically, the
RGB learner can be used to capture the features of
small staffs’ motion while the optical flow base learner
can be viewed as the key part to eliminate the influence
of the background, especially in a similar scene. Fur-
thermore, prediction scores of two base learners can
be weighted by the softmaz function according to the
performance of each base learner. Finally, the predic-
tion scores of the two base learners are fused to ob-
tain the prediction result, namely the specific actions

of the staffs in the videos. The experiment result shows
that the proposed method achieves 92.41 % accuracy on
the service action dataset of the power supply business
hall.

Keywords

3D convolution, action recognition, ensemble,
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1. Introduction

In a society with fierce market competition, quality ser-
vice is the lifeblood of an enterprise. To improve the
service quality in the power supply business hall, many
electric companies intend to implement video recog-
nition techniques to detect the service actions of the
staffs. However, different from usual action recognition
[10] and [19], service video recognition is more compli-
cated. Most service video recognition scenes are static
and similar, which means that the class of action can-
not be distinguished from the background information.
Moreover, the range of staffs’ motion is small, and some
service actions are similar. Therefore, it’s hard to rec-
ognize service actions.

Most of the traditional action recognition methods
are based on hand-crafted representations, such as
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Motion Boundary Histograms (MBH) [3], STIPs [11]
and iDT [23]. These methods are based on the features
of the action to design effective algorithms to extract
the motion features in the video. However, due to the
lack of flexibility and scalability of hand-made repre-
sentations when facing large data sets, these methods
have low action recognition accuracy. In recent years,
deep learning methods have been widely used to solve
complex problems in the computer vision field [13],
such as face recognition [9] and [25], animal recognition
[22] and |26]. In action recognition, the use of learned
representations with a deep learning approach has bet-
ter performance than hand-made representations [I§]
and [24].

As one of the representative algorithms of deep learn-
ing, 2D Convolution Neural Networks (2D-CNNs) are
widely used in learned feature extraction. Region con-
volution neural network [7] was designed for object
detection. Donahue et al. [4] proposed a recurrent
2D convolutional architecture for visual understanding
tasks. However, 2D-CNNs extract features from the
spatial dimensions only and fail to capture temporal
features which are the key to action recognition. To
obtain temporal features, Ji et al. [8] developed 3D
convolution, which extends the 2D convolution in the
temporal dimension. Then Tran et al. [2I] proposed
a 3D Convolution network (C3D) using 3D convolution
operations to extract features map in both spatial and
temporal dimensions. Even for small movements, C3D
has a reasonable recognition rate.

However, the performance of traditional CNNs with
RGB frame inputs only is more dependent on the
object or scene information of the training set [I7].
In the power supply business hall, the background of
the service video is static, which contains very little
information of the scene. Therefore, relying only on
CNNs with RGB inputs for service action recognition
is very difficult. There are also many action recognition
methods for static frames, such as SIFT [14], HOG [2].
But they cannot solve problems such as objects being
occluded or are unable to extract features accurately.

To better recognize the action, as tested by the ex-
periment [I6], the optical flow is also useful in action
recognition. When the observer is not moving, using
optical flow can eliminate the influence of the back-
ground and other irrelevant factors. However, the ac-
curacy of optical flow will decrease in the presence
of noise [15]. Therefore, many two-stream CNN ar-
chitectures that take optical low and RGB frames as
two networks’ inputs were proposed to extract Spatio-
temporal features. However, the two-stream network
uses only a single frame of RGB images in a spa-
tial dimension and uses stacked optical flow frames in
a temporal dimension. It makes the network access to
Spatio-temporal features particularly limited [6].

In this paper, the 3D-Fused ConvNet based on RGB
base learner and optical flow base learner is proposed
to achieve service action recognition in the power sup-
ply business hall, which is characterized by its high
recognition rate. Both base learners are C3D archi-
tecture. The RGB learner can be used to capture the
features of small staffs’ motion while the influence of
background and other irrelevant factors can be elimi-
nated by the optical flow learner. Firstly, in order to
establish a dataset, the service action videos of staffs
in the power supply business hall are divided into clips
according to the class of staffs’ actions. Secondly, the
clips are sent into the 3D-Fused ConvNet, and the
RGB frames are extracted from the clips at intervals
of eight frames while the Gunnar Farneback method
[5] is used to obtain the optical flow frames. Thirdly,
RGB frames and optical flow frames are sent into RGB
learner and optical flow learner, respectively, to get the
prediction scores for each action. In the next step, pre-
diction scores of two base learners can be weighted by
the softmax function according to the performance of
each base learner. Then, the prediction scores of the
two base learners are fused to obtain the prediction re-
sult, which is the specific actions of the staffs in the
videos. Finally, some experiments are conducted to in-
vestigate the performance of RGB learners and optical
flow learners. It can be concluded that the proposed
method features by its high recognition rate from the
experiment result.

Network Architecture and
3D-Fused ConvNet Method

2.

In this section, the problem description, the optical
flow method and the difference between 2D and 3D
convolution will be briefly reviewed. Then the C3D ar-
chitecture and the 3D-Fused ConvNet are given a de-
scription.

2.1. Problem Description

In this paper, we focus on the service action recogni-
tion in the typical power supply business hall scene of
less than two people with a well-segmented video. Six
service actions commonly used in the service process
are selected to establish our dataset, including sitting,
introducing service content, standing, bowing, submit-
ting materials and shaking hands. Among these ac-
tions, the detection of submitting materials and shak-
ing hands are the most challenging tasks since they
have the same backgrounds. Specifically, the submit-
ting materials and shaking hands have the same fea-
tures in translation motion and arm pendulu-like mo-
tion, as shown in Fig.[I} In addition, the range of move-
ment of some actions is quite small, such as standing,
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bowing, and introducing service content, which also
leads to the recognition of service actions is challeng-
ing.
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Fig. 1: The features of service actions of submitting materials
and shaking hands.

2.2. Optical Flow

Optical flow is the motion vector field of pixels in a two-
dimensional image, which is often used to detect and
estimate the object. The optical flow method attempts
to calculate the motion vector field between two im-
age frames, which are taken at the time ¢ and ¢ + At
at each pixel’s position. At position (z,y,t), assum-
ing the intensity A(x,y,t) of pixels following brightness
constancy constraint can be given:

Az, y,t) (1)

Perform Taylor approximation on the right-hand side
of Eq. and divide dt on both sides of the equation.
The optical flow equation is obtained by:

dA dA dA
— v+ — =0,
d:c

= Az + Az, y + Ay, t + At).

(2)

. Also, 44

ent along the horlzontal axis, “Cll—A is the image gradient

where u = dt L and v = 2 4 is the image gradi-

along the vertical axis, and 4 s along the time. How-
ever, there is only one equatlon but two unknowns. In
this paper, the Gunnar Farneback method [5] is cho-
sen as an additional constraint to calculate the motion
vector field. The algorithm is briefly reviewed as fol-
lowing in the Alg.[I} where ® represents the Hadamard
product of two vectors. Then optical flow frames can
be obtained by coloring motion vector field with Mun-
sell color system. Different colors, shades of colors of

the optical flow frames indicate the different motion in-
tensity and direction of the object, respectively. Thus,
the optical flow frames indicate the information about
the movement of objects while the influence of back-
ground, staffs’ clothes and other irrelevant factors on
action recognition are eliminated.

Algorithm 1 Dense Optical Flow (Gunnar Farneback
Method).

Require: prev: the RGB frames.
Ensure: §: a parameter vector for each pixel in a sin-
gle image.

0 <—prev //Convert to grayscale

f(@) « @TA@ + bT@ + ¢ //Binomial modeling
f(@) parameterlzed to get (by,ba,...,b6) €
B+ @® (by,by,...,bs) //Add weight

6 + The dual conversion B

-

5 h!

2.3. 2D Convolution and 3D

Convolution

2D-CNNs have strong feature extraction capabilities
in operating two-dimensional images. The essence is
to use each convolution kernel to calculate the feature
map. The value at position (z,y) on the j-th feature
map in the i-th layer can be computed as:

rr(EE T

m p=0 ¢=0

(i—-1)m

(»8+;v)(y+11) + bij> (3)

where b;; is the bias of the feature map; w; .., indicates
the weights of the kernel connected to the m—th feature
map in the previous layer; P;, Q; is height and width of
a 2D kernel; f(e) is the nonlinear activation function.

However, as shown in Fig. a convolution oper-
ation only extracts the features of one frame in the
2D convolution. Hence, 2D convolution contains no
time information which cannot be obtained through
a single frame. To better extract temporal informa-
tion, 3D-CNNSs stack multiple consecutive frames into
a cube and use 3D convolution kernel to obtain Spatio-
temporal information. The value at position (z,y, 2)
on the j-th feature map in the i-th layer can be com-
puted as shown in Eq. (), where wgi indicates the
weights of the kernel connected to the m-th feature
map in the previous layer; P;, Q; are the height and
width of a 3D kernel; R; is the size of the 3D kernel
along a temporal dimension. Figure 2] shows the com-
parison of 2D convolution and 3D convolution opera-
tions. H and W represent the height and width of the
image frame, respectively, and T represents the time-
line. The 2D convolution can only extract features on
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a single RGB frame, while the 3D convolution can ex-
tract features on multiple consecutive RGB frames at
the same time.

Fig. 2: Comparison of 2D convolution I@' and 3D convolution
@ operations.

2.4. C3D Architecture

The C3D is the most representative 3D-CNNs. 16 con-
secutive service action frames with the size of 112 x 112
are considered as inputs to the C3D architecture. Ta-
ble [l shows the C3D architecture. C is the number
of channels, D is the number of frames. There are 8
convolutional layers, 5 pooling layers, 2 fully-connected
layers and a softmax output layer.

Tab. 1: The architecture and dimension of C3D.

Name Kernel dims Output dims
(RXPXQ) (CXDXHXW)
Convl 3x3x3 64 x 16 x 112 x 112
Max-poolingl 1x2x2 64 x 16 X 56 x 56
Conv2 3x3x3 128 x 16 X 56 x 56
Max-pooling?2 2x2x2 128 x 8 x 28 x 28
Conv3a 3x3x3 256 x 8 X 28 x 28
Conv3b 3x3x3 256 X 8 x 28 x 28
Max-pooling3 2x2x2 256 X 4 x 14 x 14
Conv4a 3x3x3 512 x4 x 14 x 14
Conv4b 3x3x3 512 x4 x 14 x 14
Max-pooling4 2x2x2 512 X2 X T7TxXT
Convba 3x3x3 512 x2Xx7X7
Conv5b 3x3x3 512 x2Xx7xX7
Max-poolingh 2x2x2 512 x1x4x4
1 x 1 conv - 8192
Fc6 - 4096
Fe7 - 4096

In the convolutional layers, all kernels of 3D convo-
lution filters are 3 x 3 x 3 with stride 1 x 1 x 1. The
nonlinear activation function is Rectified Linear Unit
(ReLU). It can effectively alleviate the problem of van-
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ishing gradient. Here is ReLLU definition:

x <0
else

()

0
ReLU =
max(0, z)
Next, the 3D pooling layer is followed. It is an exten-
sion of 2D pooling in the time dimension. It stacks
feature maps across time and applies max-pooling to
shrink this spatiotemporal cube with a 3D pooling
cube. The pooling filters of the size: 1 x 2 x 2 and
2 x 2 x 2, which can preserve time information. The
pooling layer can be defined as:
S (i-1) .
a; = B max (ozj ) + b5, (6)
where max(e) computes the max values over a neigh-
bourhood in each feature map. S/ and b] represent
multiplicative bias and an additive bias.

The last two fully-connected layers contain 4096 out-
put units which will be sent to the softmax classifier
for classification. The value of softmax can be defined

as:
exp (zqt)
N b)

> exp (z4)

t=1

Ygn = (7)

where Yy, represents the probability that the g-th sam-
ple belongs to the n-th class of action. x4 represents
the t-th element in the output vector of the g-th sample
after passing through the classification layer.

To train the C3D model, the stochastic gradient de-
scent [1I] is used to minimize the difference between true
value and the actual output of the network. The loss
function is defined as follows:

G N

Z In (an?gn) ,

i=1 j=1

1

L=——
G

(8)

where G is the total number of samples, an represents
the true probability that the g-th sample belongs to the
n-th class of action.

2.5. 3D-Fused ConvNet

Figure[3]shows an overview of the whole 3D-Fused Con-
vNet architecture. The architecture consists of three
parts: an input layer, base learner part and class score
fusion.

In the input layer, the optical flow frames are ex-
tracted from the video, while the RGB frames are ob-
tained at intervals of eight frames. Then the base
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Fig. 3: 3D-Fused ConvNet architecture.
green boxes, the yellow boxes and the blue box represent
the convolutional layer, pooling layer, softmax layer and
class score fusion layer.

The pink boxes, the

learner part is followed, the input of the first base
learner is RGB frames, and the input of the second
base learner is the optical flow. Each base learner is
trained for better extract features. In class score fu-
sion, according to the recognition accuracy rate of each
base learner for each class of service action, the weight
X is determined by the softmax formula. To increase
the weight of the base learner with high accuracy, the
recognition rate of each action is multiplied by 10, and
then the softmax formula is used:

- exp (z11) exp (z21) exp (zn1)

)‘ = 2 L y T 2 )
> exp(z1e) Y exp(za1) > exp (2nt)
=1 =1 i=1

9)
where z,; represents 10 times the recognition accuracy
rate of the ¢-th base learner for the n-th action recog-
nition. The prediction score of each base learner will
be multiplied by weight A to obtain the final prediction
score. The 3D-Fused convolution network uses the ser-
vice action class with the highest prediction score as
the action recognition result. The final prediction score
can be computed as:

Zf:X®21+(E—X>®ZQ, (10)
where ® represents the Hadamard product of two vec-
tOI‘S; 51 = (211, 2215wy an), ZQ = (212, V25 TN an).
E is vector with all elements equal to 1 and with the
same dimensions as 27 and 25. Also, z7 and Z5 represent
the prediction score of two base learners, respectively;
n represents the number of class of service action recog-
nition; Z ¢ represents the score of final prediction.

3. Experiments

In this section, we first introduce our server action
dataset provided by Hunan Electric Power Metering

Center, and then the training details are presented. In
the last, the performance of two base learners and the
3D-Fused ConvNet are evaluated.

3.1. Dataset

The service action videos of staffs are divided into clips
with video editing software according to the staffs’
movements to establish our dataset. The method of
C3D starts by capturing the appearance of a single ob-
ject for the first few frames of a video, then focusing on
the detection of actions of this object [2I], which leads
to the inability to recognize the actions of multiple peo-
ple simultaneously. If the videos contain multiple ges-
tures or multiple people, we use video software to cut
the video into a scene containing only one gesture or
no more than two people.

As shown in Tab. [2] the dataset contains 998 clips,
of which 896 clips are recorded in the Shaoshan power
supply business hall, and the rest are recorded in dif-
ferent scenes. Like UCF101 [19] dataset, we convert all
clip sizes to 320 x 240 pixels spatial resolution.

Tab. 2: Summary of characteristics of our dataset.

Attribute Value
Actions 6

Clips 998
Groups per Action 5-7
Clips per Group 20-30
Mean Clips length 3.2s

Frame Rate 30 fps

Resolution 320 x 240

There are six common service actions in total. Fig-
ure [4 shows the class of server actions, such as bowing,
shaking hands, introducing service content to users, sit-
ting down, standing and submitting materials. Each
action class that has at least 100 video examples is
recorded. In order to evaluate our algorithm, we ran-
domly divide the 998 clips into training set and testing
set according to the ratio of 4 : 1.

3.2. Implementation Details

Firstly, while calculating dense optical flow with an
i7-7700HQ CPU and OpenCV library to obtain the
optical flow frames at 16.8 frames per second (fps),
the service action clips are read at 8-frame interval to
obtain RGB frames. Secondly, after the optical flow
frames are obtained, the RGB frames and the optical
flow frames are input to 3D-fused ConvNet at the same
time. The 3D-fused ConvNet is trained and tested with
a GPU (2080Ti) under the implementation of Tensor-
Flow and Linux. Specifically, in order to avoid overfit-
ting, the batch size is set to 10, and network weights
are initialized with Sports-1M pre-trained models. The
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Fig. 4: Six actions included in our dataset shown with three sample frames. @ @ @ l@and are introducing, bowing,
submitting materials, sitting down, standing and handshaking, respectively.

initial learning rate is 0.0001, and the moving average
decay is 0.999. The Adam [12] optimization algorithm
is used to update the network parameters. The cross-
entropy loss is employed to backpropagate gradients.
Finally, the clips of testing set are sent into the 3D-
fused ConvNet to get the prediction result. The aver-
age speed of calculating the final result is 12.4 fps.

3.3. Experiment and Results

In this part, the selection of maximum step sizes of
each base learner is analyzed firstly. Then the analysis
for the performance in changing scene and confusion
matrix on our dataset will be shown. Finally, the ac-
curacy of the 3D-Fused ConvNet will be compared with
other methods.

To evaluate the performance of the two base learners
under different maximum step sizes, the experiment
sets the maximum step size of 500, 1000, 1500, 3000,
5000 and 8000. Table [3| shows the recognition rate of
two base learners on our dataset.

The accuracy rate does not increase with the in-
crease of the number of step sizes. RGB learner and
optical flow learner achieve the best performance when
the maximum number of step sizes are 1500 and 8000,
respectively. By considering the correct rate and the
time spent, 1500 and 1000 are finally selected as the
maximum step size of the two base learners in all the
next experiments. Table [3| also indicates that the per-
formance of RGB learner is significantly better than
optical flow learner; this is because RGB frames con-
tain more information than optical flow. Although the
result of RGB learner is much better than optical flow
learner, RGB learner cannot be used only for service
action recognition. This conclusion will be proved in
the subsequent two experiments.

To further illustrate the effectiveness of two base
learners, the performance of each class of action is

Tab. 3: Comparison of action recognition accuracy in different
maximum step size.

Maximum Accuracy of Accuracy of optical
step sizes | RGB learner [21] flow learner [20]

500 83.48 % 38.83 %

100 88.39 % 81.46 %

1500 90.65 % 79.68 %

3000 87.94 % 77.89 %

5000 88.83 % 78.13 %

8000 88.39 % 81.70 %

demonstrated, and the impact of changes scene will be
shown in the next. Figure[5]and Fig. [6]show the confu-
sion matrices of RGB learner and optical flow learner
on our dataset. The number in the box indicates the
probability that the predicted label is the correspond-
ing true label. The performance of RGB learner is well
in recognizing the standing and the introducing states,
even though the movement of the standing is minimal.
However, the RGB learner is weaker than the optical
flow learner in terms of sitting down and introducing
action recognition. The Optical flow learner, which
has 96 % and 94 % in recognizing the sitting down and
the introducing state, respectively, is better than the
RGB learner. It is because dense optical flow, which
computes the vector for every pixel of each frame, is
more sensitive to movements with large amplitudes.
However, the optical flow will confuse movements with
small or similar actions. For example, the optical flow
has 76 % recognition rate in submitting, and there is an
11 % probability that the submission will be recognized
as a handshake.

To explore the impact of changes scene on the two
base learners, the 896 clips recorded in the electrical
hall are put into training set, and 108 clips recorded in
different scenes were put into the testing set. As Fig.[7]
shows, the accuracy of the RGB learner and the opti-
cal flow learner is 47.22 % and 60.18 %, respectively.
When changing to an untrained scene, the accuracy
of the RGB learner descends sharply, while the accu-
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Confusion matrix of RGB learner
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Fig. 5: Confusion matrix of RGB learner.
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Fig. 6: Confusion matrix of optical flow learner.

Fig. 7: Comparison of each learner with the trained scene and
each learner with the untrained scene.

tween our method and other methods in each class of
action recognition accuracy rate. Unlike other ways
that have low recognition rates in some actions, our
approach has high accuracy and a stable recognition
rate for each service action.

[ ] Oursfiii] €3D [_] Optical flow [0 Average fusion

Accuracy
o
P
T

0.6 -

Handshake Introduce Sit

Stand

Bow Submit

Fig. 8: Comparison between our method and other methods in
each class of action recognition accuracy rate.

Above all, after the exploration and analysis of the
3D-Fused ConvNet, our result is shown in Tab.[d] The
recognition accuracy of the 3D-Fused ConvNet is bet-
ter than other methods. The experimental results also
prove the effectiveness of the 3D-Fused ConvNet.

Tab. 4: Comparison of action recognition accuracy with other

racy of the optical flow learner is relatively stable. The
RGB base learner is weak in generalization ability and
relies too much on the information in the training set.
Our method, the 3D-Fused ConvNet, which combines
two base learners, has better stability in the face of
untrained scenes.

Based on the above two experiments, both base
learners have their advantages and disadvantages. The
RGB learner has an excellent performance on service
action recognition and even has a very high recognition
rate for small-scale actions like standing. The optical
flow learner has the advantages of high recognition rate
in large-scale works and good stability. Our method
adjusts the weights of the two base learners to give
play to the advantages of the base learners and reduces
their shortcomings. Figure[§shows the comparison be-

methods.
Method Accuracy
03D 2] 90.65 %
Optical flow 81.70 %
Average fusion [18] 87.05 %
Ours 92.41 %
4. Conclusion

This paper establishes a dataset with six service ac-
tions that are commonly used in the service process
and proposes a 3D-Fused ConvNet that effectively com-
bines RGB information and optical flow information
for the accurate recognition of service actions in a typ-
ical power supply business hall scene of less than two
people. The experiments show that the RGB learner
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can capture the small range of service actions, and the
optical flow learner can eliminate the influence of back-
ground and other irrelevant factors. In future works,
we will explore the specific performance of the 3D-fused
ConvNet in a scene that contains multiple people or in
a different room.
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