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gymmary In the paper we determine the transient magnetic field in a conducting cylinder placed in external
Jongitudinal sine-shaped magnetic field using the solution of Bessell equation in cylindrical co-ordinates, and also

applying integral Laplace transformation. The resulting equations are the basis for calculation and graphs of space-time
distributions, attenuation and diffusion of the magnetic field strength in the cylinder. The resulting equations can be
used to describe volume density of the power lost in the cylinder and to determine substitute parameters of the

inductor-cylindrical work system.

1. INTRODUCTION

We deal with the case of a conducting cylinder in
the longitudinal sinusoidal magnetic field in the
induction metal heating. The magnetic field is
generated by an inductor to which the power is supplied
from a thyristor converter of nominal frequencies

2 ,
ranging from 16= Hz to 27,12 M-Hz. Average and

high frequencies of the magnetic field generated by the
inductor require the use of field methods in the
description of the electromagnetic field inside the
cylindrical charge [1, 2, 3].

X

Fig. 1. Conducting cylinder in external longitudinal
uniform sinusoidal magnetic field.

Longitudinal sinusoidal magnetic field is external
towards the heated cylinder, it has got one component
along the z axis (Fig.1) and it is determined with the
following formula:

H™ ()=1H" (), ey

in which the component of the magnetic field strength
along the axis z

H (1) =H,sin@t+&)1(1), (la)

where: H , - magnetic field amplitude in Am™
@ - pulsation in rad-s’,
¢ - initial phase in rad,
1(t) - Headviside unit step.

2. MAGNETIC FIELD

In the case of an infinitely long conducting
cylinder placed in external longitudinal magnetic field
(Fig.1) the values describing the electromagnetic field
as for the symmetry of the system depend only on the r
co-ordinate of the cylindrical co-ordinate system. Then,
we deal here with a one-dimensional question with

constant magnetic permittivity of the ¢ = Y4, and its

constant conductivity y . As the field H “(¢) has got

only one component along the z axis, from the second

dH “' (1)
o

the electric field strength has also got one component
. - - R E A4

along the axis © ,ie. E“(r,0)=~15E5 (r,1).

So we have to deal with a question of the cylindrical

wave cast on the lateral surface of the conducting

cylinder.

In the general case of a conductor of a chosen kind
placed in alternating electromagnetic field — some
currents are bound to appear, as the total electric field
cannot equal zero everywhere in the whole conductor.
Those currents are called Foucault currents [4, 5] and
are determined by the current density vector J(7,1)-
Fig.l. These currents generate the so-called return

rotE “ (r,t) =—u

Maxwell equation

interaction magnetic field H “(r,#), which, in the
system we are considering, has got one component
along the z axis, thus H”(r,t)=1_H (r,1). In
papers [4, 5] it has been shown that this field equals
zero. The zero value of the return interaction magnetic
field in ¥ > R, area results form the fact that the lines
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of the density of current J(r) induced in the tubular
charge are concentric circles of Oz axis— Fig.1. Then
they do not generate any magnetic field outside the
tube, as it is also the case with the current in the
infinitely long solenoid. Then the total magnetic field in
the considered area

H'O=1H'0)=1LH"()=LIH"0). 2

where
HYO=Hee” e 1), @

where the complex amplitude of the external magnetic
field

H,=H,e". (2b)

The required magnetic field strength H 1 (r,t) in
the area of (0<r<R) is written as
H!(r,t)=Im{H (r,1)}, where H'(r,1) is the
complex magnetic field function of real variables r

and . This function fulfils the scalar wave equation in
cylindrical co-ordinates [6]

0. 3

FPH.(rp) 10H.(r,)  OH'(r1)
o r oo T T

For r=R ithas to be the case of the continuity of
the magnetic field strength, i.e. we have the following
boundary condition for the complex values:

ﬁ_i (R,1) = l_fjw (1) (3a)

Moreover we assume a zero initial condition, 1.e. for
t=0
!
H. (r0)=0. (3b)

We solve equation (3) with the boundary condition
(3a) applying Laplace integral transform. In order to do

-y
this let us denote by H -(r,s) the Laplace transform

of complex function Ql (R,t) in relation to variable
¢, and then we perform the Laplace transformation of
the following terms of the differential equation (3},
taking into account  the zero initial conditions
H i (r,0) = 0. Thus, we obtain the following equation
[4,5]:

aﬁf (r,s) . 1 BMI}[ (r,$)

-~ St };’i'z‘,s}z(} 4)
or* rooor Hy TS

with the boundary condition

— 1
H.(R.s)=H, . (4a)

I

where
Sy = ] . (4b)

Equation (4) is the Bessel equation of zero order of
variable r, whose solution is the function [4, 5]

1, (‘/;\/;‘?’7) ()
(s=s9)1, {\/:\[;};R} 1 »

where /[, (\,[: Ay r) is the modified Bessel function
of the complex variable \/‘? YT of first kind and

zero order. The function zeros of the denominator in

?];i (ra S} - !_i,()

formula (5) are § = 5, and

§=§ =-0 = ——x< (), (5a)
25
where [7]
1124 120928

(5b)

X =@ —— Tt
TN 8, 38p,)" 15889,)

where

0, =k ”“3”)”‘ (k=1,23,.). (5

Then to calculate the original  H i(r,f} of the

.......M, . .
operational function H ;(r,5) we use the distribution
theorem, obtaining [4, 5]

Hi(r.n)= [fz 0+ 1O, zf}] 0. ©

k=1

where f1 _ (r,1) is the original of function (5) in the

: . 7 .
pole s =5, (k=0), while H_ (r) is the
original of this function in the pole s=3,
(k=1,2.3,..). These originals are given by the
following formulas:

1,(I'r) N

H' (r))=H, -2 e, (6a)
i1 .4 i, 1,(C'R) (6
and
T
, ]@(“j-xx« E) xz
H.,(rn=H, expl—4—1],  (6b)

AG)L(x)  uyR

where [,(—jx,) isthe modified Bessel function of
first kind and first order,
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[R'muy — jx}]=
o, y—ix;] ! (60)

= A, (x)explj a (x,)]

Aglx,)=

and the complex propagation constant

C=\iJouy =k+jk=\2jk.  ©

where the coefficient

o1
k= \[ b4 . (6e)
2

P

whose inverse is the depth of the diffusion of the wave
inside the well-conducting medium and it is

5=t /Wz : (6)
k Ty

The exponential form of the Bessel function
appearing in formulas (6a) and (6b)

I(Lry=M,(Lr) expljf, (L)l

1,(ICRy=M,(I"Ryexpliff,(L_ R)].

o o T, (7
1, (-1x, &5} =M, (-], “}‘? exp{jﬂm (-1 % 'é”*

L) =M, (-x, )exp B, Gix)l.

lets us to write the functions (6a) and (6b) in real forms,
i.e. as real functions of variable r of the cylindrical co-
ordinate system and of time ¢. We obtain respectively

H () =TIm{H  (r0)) = H, 0=
2.0 y {Wmf}( } 0 MQ(!:R) o

sinfart+ B, (L r)— B, (L R)+£]
and

H (r,y=Im{H (r.0)} =

. r
My(-jx,—) -
H, : L exp[—t—1] (8a)
A (x) M, (%) uy R

) Siﬂ[ﬂi},,& (G “%) - lgi‘k (-Jx) — G (x) + ¢l

where the module of the complex number A, (x, )

1%56 (“};k ) = ‘;‘)““‘""“

o

! J(RPmuy)® + x} (8b)
Xy

and its argument
a, (x,) =—arctg———. (8¢)
R ouy

Finally the magnetic field strength in a conducting
cylinder placed in external Jongitudinal magnetic field
of a character of an attenuated sinusoid has the
following form

Hi(r,n) = {H L+ Y H (m-)} 1(1). (8d)

kst

3. DISTRIBUTION OF THE MAGNETIC FIELD
To work out the graphical presentation of the
magnetic field distribution in a conducting cylindrical
charge we introduce the variable x corresponding to the
variable r of the cylindrical co-ordinate system, as

;
X =—,

R

0<x<1, 9

The frequency of the sinusoidal external magnetic
field and the conductivity of the charge with regard to
its external radius are taken into account through the
coefficient

a=—=kR. (9a)

Then, we obtain:

LI‘WMA:J":JZA‘;(ZX, (9b)
L R=\2jkR=\2ja. (90)

Then we describe the magnetic field in relative units
by means of the coefficient

H!'(x.t
hix.t)= W;Mgl_g, =
v (10)

= Ehg (x,1)+ i h, (x,t)} (1)
k=1

where the fixed component of the magnetic field

M,(2jax)
M,(2j) . (10a)
sinfa@ 1+ B, (2] @ x) - B, (21 )+ £

and its transient component

hy(x,1)=
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jxx @ x;
h(x,1) = MO(J‘X&) —expl[ tﬁfv
A () M, (-jx,) 2a° (10b)

ssin[f, (jxx) =B, (Gx) e (x,) + ]

The influence of the parameter « on the magnetic
field distribution in the cylindrical charge is shown in
Fig.2 at r = 774, that is to say for the instantaneous
value of the external magnetic field equal to its
amplitude. The space-time distribution of this field is
shown in Fig.3.

e <
. /
/J
//// - -
- porr i : x
Ol—Br5—0.6 0.7 0.8 0.9 1.1

Fig. 2. Diffusion and attenuation of the magnetic field
for t=TH, o =10 rads’ y=5810° Sm’ & =
0 l—-a=3 2-0=5 3-a=10.

Fig. 3. Time-space distribution of magnetic field
strength in a conducting cyvlinder placed in external
longitudinal uniform sinusoidal magnetic field: a = 5
¢=0, w=rl0rads’ y=5810° §Sm'.

4. CONCLUSION

If we do not take into account the transient, i.e. if we
consider the conducting cylinder in external
longitudinal sinusoidal magnetic field the transient
component will disappear and there will only be the
fixed component left. The complex magnetic field is
then defined with the formula

Hirty=H' (rnn)=H'(r)e", (11)
z S 20} z

thus, from equation (6a) we obtain

Ei(")zfio IG(\Gmr) ’
Ie(ﬁm R)

which is the solution (given in [6], p. 199. formula
(9.109)).

The fact that the transient component appears results
in the ‘smoothing” of the magnetic field distribution. It
is shown in Fig.4.

(1ia)

Fig. 4. Distribution of the magnetic field at t = TH, & =0,
w=x10"rads"', y=5810° Sm” a=10: 1-hixt) 2-
ho{x,t ).

Having determined the magnetic field strength
H (}",{')rlx}{(}”,tj we can, form the first Maxwell
equation rotH' (r,1) =J(r,t), determine the current
density J(r,1) =1, Jo(r,7). Then also the Poynting
vector  P(r.t)=E(r,)xH(r,t)==P(r,))1_ | that

will let us determine the heating of the cylindrical
charge in the case of the transient magnetic field.
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