205 A vocalisation-based drawing interface for disabled children

A VOCALISATION-BASED DRAWING INTERFACE FOR DISABLED CHILDREN

Edward Burke®”, Annraoi de Paor™”, Gary McDarby®

o National University of Ireland, Dublin, Dept. of Electronic and Electrical Engineering, Belfield, Dublin 4, Ireland.
Y National Rehabilitation Hospital, Rochestown Ave., Diin Laoghaire, Co. Dublin, Ireland.

Summary In our work with disabled children at Ireland’s National Rehabilitation Hospital, a problem we have experienced
in the facilitation of art activities is that traditional art materials and standard computer drawing programs sometimes prove
inaccessible. In this paper, an original system, called “PaintMyVoice™ is presented which facilitates the creation of two or
three-dimensional images using a variely of novel input modalities. In particular, vocalisations can be used to create original
images of a variety of objects, including trees, flowers and landscape elements. Additional input to the system can optionally
be provided via mouse, keyboard, switch interface or digital camera depending on the abilities of the user. Here, the
program’s user interface is described, with an emphasis on accessibility features. The signal processing techniques used to
measure various vocal characteristics including intensity, pitch and other spectral characteristics are outlined. The means of
translation from vocalisation to visual representation is also explained for each type of object discussed. This technology
facilitates artistic expression by all children, but especially those with severe physical and/or intellectual disabilities.
Furthermore, in certain cases, it may be used to provide motivation in therapeutic vocal exercises. Finally, the results of

initial user trials are presented.

1. INTRODUCTION

In this paper, the design of a computer program
called Paint My Voice is described. This
experimental software is designed to facilitate
artistic expression by people, especially children,
with disabilities. It is intended to explore the use of
multimodal and highly accessible interfaces in the
creation of visual art. By suitable adaptation, most
computing tasks can be carried out under the
control of single switch, often using a scanning
paradigm [1]. Furthermore, several programs that
facilitate drawing using external switches and other
special input devices are commercially available.
Many such programs sacrifice flexibility in the
interest of broad accessibility, allowing the user to
perform relatively simple “drawing” functions, such
as revealing a pre-drawn image bit by bit. By
contrast, the Paint My Voice program features a
number of drawing tools, both conventional and
unconventional, which are highly configurable. The
input mode used with each of the program’s
drawing tools can be uniquely tailored to an
individual user’s needs. Furthermore, a special
emphasis is placed on the use of sound as an input
modality for computer drawing programs. As a
means of human-to-computer communication in
rehabilitation, the use of sound is well established,
both in speech recognition systems [2] and in input
systems based on non-verbal sounds [3]. Computer-
based drawing is an application particularly well
suited to non-verbal audio input.

2. PROGRAM DESCRIPTION

The Paint My Voice program facilitates
drawing for users with disabilities through its
unique input mode customisation feature. It caters
for a variety of input devices including mouse,
keyboard, external switches and non-verbal audio

input. A number of different drawing tools are
provided, such as paintbrush, line, rectangle,
ellipse, etc. The way in which each of these
drawing tools is controlled by the input devices
used may be configured individually, allowing the
program to be tailored to the needs and abilities of
an individual user. The support of an external
switch interface enables the program to be used
with an enormous range of pre-existing switch
devices, such as chin switches, suck-and-blow
switches, etc.

The program features three components, each
with a distinct mode of operation — a canvas editor,
a tool input editor and an object generator. The
canvas editor is the main drawing interface. In this
mode, the user selects one tool at a time from those
shown in the toolbar. Each tool provides functions
to add, modify or remove elements from the
picture. Paint My Voice is a vector-based tool,
rather than a raster-based one [4]. An array of
picture element objects is maintained by the
application. In the program’s object model, each
element in this array is an instance of one of a
number of classes derived from a generic picture
element base class. Furthermore, each of the
application’s tools is an instance of a specific tool
class derived from a generic tool class. The
application maintains an array of tool objects from
which the user selects one at a time.

Each tool is controlled via an interface
exported by it to the application. Associated with
each tool is a user-defined tool input map that
determines how messages from the each of the
input devices used are mapped onto the interface of
that tool. These tool input maps are created using
the application’s tool input editor.

The application’s third component is an object
generator. This is used for generating two and
three-dimensional object models and images from
vocalisations and other sounds. The objects created

Advances in Electrical and Electronic Enginecring

206

are exported as two-dimensional raster images for
incorporation into drawings in the canvas editor.

3. TOOL INPUT CONFIGURATION

The tool input editor facilitates the
customisation of user control of each of the tools
made available by the program. In this mode, as in
the canvas editor, the array of tools available to the
user is displayed in the toolbar. However, unlike the
canvas editor, the main area of the window is used
to display a block diagram, graphically representing
the relationship between input devices and the
drawing interface exported by the currently selected
tool.

Each input map is comprised of blocks of three
distinet types — input blocks, intermediate blocks
and output blocks (including a block for the ool in
question). An input map may be thought of as a
signal flow diagram where the input blocks are
signal sources, the output blocks are signal sinks
and the intermediate blocks are used to perform
signal transformations. Blocks are added to the
graph one at a time by the user and positioned using
a click and drag interface. Each block features a
number of input and output pins. Input pins are
drawn on the left side of a block while output pins
are drawn on the right. Connections are formed
between blocks by clicking on the output pin of one
block and dragging to the input pin of another block
(or vice versa). An output pin may be connected to
more than one input pin, but an input pin cannot be
connected to more than one output pin. Each pin is
of one of three possible types — event, Boolean or
Sloating-point, denoted in the tool input editor by
the labels *(!)”, “(b)” and “(f)" respectively. The
user may only connect an output pin of one block to
an input pin of another block if both are of the same
type.

An input block typically encapsulates an input
device. Blocks are included for the mouse, the
keyboard and an external switch interface. Audio
input functionality is also encapsulated within a
number of additional input block types. An input
block has no input pins; rather the signals
emanating from its output pins are generated by
user interaction with the input device represented
by that block. For example, the mouse input block
has four output pins ~ one Boolean output
representing the state of each of the left and right
buttons (with value 1 when pressed, 0 otherwise),
and one floating-point output for each of the X and
Y coordinates of the mouse pointer. Another type
of input block is the constant block which has one
output pin, of either the floating-point or Boolean
type, which can be assigned a constant value in the
input map editor.

Most input maps contain only one oulput
block, representing the drawing interface exposed
by the tool in question. The exposed interface is

accessed by means of a number of input pins
displayed on the block. In terms of the block
diagram, output blocks represent signal sinks and
consequently have no output pins. For instance, the
output block for the paintbrush tool, features 9
input pins (as listed in Table 1).

Tab. 1. All drawing operations of the paintbrush
1ol are accessed through these nine input pins.

Paintbrush Tool OQutput Block Pins
Pin Name Tvpe

I+ X coordinate Floating-point
2 | ¥ coordinate Floating-point
3 | Painting Boolean

4 | Speed of movement | Floating-point
5 | Moving Boolean

6 | Speed of rotation Floating-point
7 | Rotating Boolean

§ 1 Angle value Floating-point
9 | Turnthrough angle | Event

3=

Fawtbrush Dutput

Muuss Inprat
X#

| Lat butio
Hight button (&)

Fig. 1. A simple input map for controlling the
paintbrush tool with the mouse.

A tool’s input map typically contains a number
of intermediate blocks that are used to transform the
signals emanating from the input blocks into a form
suitable for connection to the input pins of the
tool’s output block.

A very simple example of an input map for the
paintbrush tool is that shown in Fig. 1, in which the
X and Y coordinate outputs of the mouse input
block are connected to the X and Y coordinate
inputs of the paintbrush tool output block and the
Boolean left button output is connected to the
painting input. With the paintbrush tool’s input map
configured thus, the user draws by clicking and
dragging on the canvas with the mouse. As long as
the left mouse button is held down, moving the
mouse will paint on the canvas.

An alternative input map for the paintbrush
tool is shown in Fig. 2. This map is designed to
facilitate drawing with two external switches

aar”

207 A vocalisation-based drawing interface for disabled children

ity (e,

right

#1 T an Camer |

Fig. 2. An alternarive input map for the
paintbrush rol. In this case, two external
switches are used to control the tool.

attached to a peripheral switch interface. One
switch (Switch 1) is used to control movement of
the paintbrush coordinates. The other switch
{Switch 2) is used to turn painting “on” and “off”.
Only when painting is “on” does the brush mark the
canvas as it moves. Switch 1 controls orientation
and movement of the paintbrush alternately. First
the user presses and holds switch 1 while the
paintbrush direction arrow rotates, until the desired
direction of movement is reached. Next, the user
presses and holds Switch 1 again while the
paintbrush moves in the selected direction, until the
desired position is reached. If the Painting input is
“on” during this process, a brush stroke will be
drawn between the starting and ending points. This
example illustrates the wuse of tool input
configuration in the facilitation of drawing using
special input devices.

The Paint My Voice program provides several
audio input blocks for inclusion in tool input maps.
Each of these blocks outputs a value determined by
some property of a user-generated audio signal
recorded through a microphone. Single channel
audio data are recorded at a sampling frequency of
20.05kHz, with 16-bit resolution. Each audio input
block calculates a different value from the recorded
data. Blocks are included for calculation of audio
pitch, intensity and zero-crossing rate (ZCR). Each
of these blocks has a single floating-point output
pin. Furthermore, blocks are included for the
recognition of certain sounds, including the
phonemes /o/ {as in “hoed™) and /s/ as in (“see”)
and whistling. Each of these blocks has a single
Boolean output pin.

The method of pitch estimation is based on the
identification of series of harmonics in the short-
term power spectrum of the audio signal, calculated
by multiplying each sample in a 1024-point
Discrete Fourier Transform (DFT) of the signal by
its complex conjugate. All power-spectrum samples
lower than a threshold value are zeroed. The

estimated pitch is the maximum frequency for
which more than a pre-defined fraction of the sum
of all remaining samples in the power spectrum is
contained in peaks located at integer multiples of
that frequency.

Sound intensity is estimated simply by
rectifying and summing the audio data in a 1024-
sample window. The ZCR is the number of times
that the audio signal changes sign in a 1024-sample
window. The recognition of phonemes is based on
the distribution of zero-crossings in the audio data.

Each audio input block used in a given input
map is an instance of a distinct class. However,
each such class is derived from a common base
class. Audio capture and buffering is handled by
static members of the base class, allowing each
chunk of audio data captured to be shared between
whatever audio input blocks are in use.
Furthermore, where two or more audio input blocks
have a computationally expensive operation, such
as a DFT for example, in common, that
computation is implemented in the static members
of a common class [5] derived from the audio input
block base class, and from which the specific
classes are derived. This means that if no blocks
requiring the operation in question to be carried out
are included in the current input map, it will not be
done. Moreover, if one or more blocks requiring the
calculation to be performed are included, it will be
carried out once and only once on each chunk of
audio data.

4. OBJECT GENERATION

For certain users, in particular those with an
intellectual disability, or with a profound physical
disability, even relatively straightforward modes of
input may prove inaccessible. The Paint My Voice
program provides an additional novel means of
drawing for such users — translation of individual
sounds or utterances directly into visual forms of
several different types. Simply by making sounds,
the user can create unique picture elements,
including trees, flowers and landscape forms. Once
generated. an object can be exported as a 2-
dimensional raster image to the canvas editor,
where the user can position it as desired.

The rules for generation of objects from
utterances rely on the calculation of several speech
signal characteristics, in particular intensity, pitch,
timbre, and the distinction between voiced and
unvoiced speech segments [6].

Each tree object consists of a solid region of
foliage, on top of a trunk. The rules governing the
creation of a tree object from an utterance may be
summarized as follows:

s Tree size is determined by the total signal
energy in the utterance.

Advances in Electrical and Electronic Engineering

208

¢ The ratio of the heights of the trunk and foliage
portions of the tree is a function of the ratio of
the sum of the lengths of unvoiced segments of
the utterance to that of voiced segments. The
more of the utterance is voiced, the shorter the
trunk in relation to the height of the foliage.

¢ The irregularity of the surface of the foliage is
determined by the average spectral spread in
voiced portions of the utterance.

¢ The variation in colour across the surface of the
foliage is determined by variations in pitch
during the voiced segments of the utterance.

A similar set of rules governs the generation of
flower objects, except that flower head diameter
takes the place of foliage height, stalk length that of
trunk height and so on.

Fig. 3. The canvas editor displaying a background
created by the object generator from user
vocalisations.

Finally, a background landscape consisting of
three elements, ground texture, hill-line on the
horizon and sky colour can be created and exported
to the canvas editor to serve as a backdrop for the
user's drawing (see Fig. 3). Each of the three
elements is generated in turn. The rules governing
the creation of each may be summarised as follows:

 The hill-line is generated simply by creating a
filled region spanning the full width of the
canvas and bounded on the upper side by a plot
of the waveform of a voiced segment of the
input signal.

¢ The sky’s colour is determined by the pitch of
a voiced segment of the input signal.

® The ground texture is a green checkerboard
pattern, the spatial frequency of which is
determined by pitch. The gradient between
dark and light regions is determined by the
harmonic content in the input signal.

Once generated, the landscape can be exported
to the canvas editor where it serves as a backdrop to
the user’s drawing.

5. USER TRIALS

Informal user trials were carried out with a
small number of able-bodied subjects to get
subjective feedback on the usability and appeal of
the program. Subjects were asked to draw a simple
figure with the paintbrush tool using only audio
input. The feedback was encouraging, but this
interface can be frustrating to a user who is able to
use a mouse instead. All users responded very
positively to the tree, object generation tools,
reporting that the experience was both novel and
rewarding. Trials are planned with disabled
children in the school at Ireland’s National
Rehabilitation Hospital.

6. CONCLUSION

The Paint My Voice program facilitates
creative expression, in the form of drawings, by
children for whom traditional drawing materials are
inaccessible. While initial testing suggests that the
program shows much promise, streamlining of the
interface is required before the program is
considered suitable for everyday use. The
program’s object generation features have
generated the most positive feedback. Development
of the program is ongoing.

Acknowledgement

This work is generously supported by the Higher
Education Authority of Ireland.

REFERENCES

[1]1R.C. Simpson, H.H. Koester, “Adaptive one-
switch row-column scanning,” IEEE Trans. on
Rehabilitation Eng., Vol. 7, No. 4, pp. 464-473,
Dec. 1999,

(2] M.C. Su, M.T. Chung, “Voice-controlled
human-computer interface for the disabled,” IEE
Computing and Control Engineering Journal, Vol.
12, Issue 5, pp. 225-230, Oct. 2001,

[3] E. Burke, Y. Nolan, A. de Paor, “An
investigation into non-verbal sound-based modes of
human-to-computer communication with
rehabilitation applications,” in Adjunct Proceedings
HCT International 2003, Crete, June 22-27 2003,
pp. 241-242.

[4] C.M. Eastman, “Vector versus raster: a
functional comparison of drawing technologies,”
Computer Graphics and Applications, IEEE, Vol.
10, Issue 5, pp. 68-80, Sept. 1990.

[5] B. Stroustrup, “The C++ Programming
Language,” Addison-Wesley, Mar. 2002, pp. 228-
229.

[6] 1. Deller, I1.G. Proakis, J.H.L. Hansen,
“Discrete-time processing of speech signals,”
MacMillan USA, 1993.

