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Abstract. Brain Computer Interface enables indi-
viduals to communicate with devices through Elec-
troEncephaloGraphy (EEG) signals in many applica-
tions that use brainwave-controlled units. This paper
presents a new algorithm using EEG waves for control-
ling the movements of a drone by eye-blinking and at-
tention level signals. Optimization of the signal recog-
nition obtained is carried out by classifying the eye-
blinking with a Support Vector Machine algorithm and
converting it into 4-bit codes via an artificial neural
network. Linear Regression Method is used to cate-
gorize the attention to either low or high level with
a dynamic threshold, yielding a 1-bit code. The con-
trol of the motions in the algorithm is structured with
two control layers. The first layer provides control with
eye-blink signals, the second layer with both eye-blink
and sensed attention levels. EEG signals are extracted
and processed using a single channel NeuroSky Mind-
Wave 2 device. The proposed algorithm has been vali-
dated by experimental testing of five individuals of dif-
ferent ages. The results show its high performance
compared to existing algorithms with an accuracy of
91.85 % for 9 control commands. With a capability of
up to 16 commands and its high accuracy, the algorithm
can be suitable for many applications.
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1. Introduction

Nowadays there is a huge demand for Brain Computer
Interface (BCI) that can be used in situations where
typical control interfaces are not an option. The con-
cept of BCI based system has been developed to pro-
vide alternate control methods for handicap people,
gamming and for special purpose applications [1]. BCI
is an interfacing technology between the Human Mind
(HM) and a processor by sensing ElectroEncephaloG-
raphy (EEG) signal and employing it to perform dif-
ferent tasks. There are two types of mind-sensing tech-
niques for the BCI system, which are invasive and the
non-invasive [2] and [3]. The invasive and/or partially
invasive sensing technique requires surgical interven-
tion for implanting the electrodes under the scalp to
communicate with the human brain. Although this in-
vasive sensing technique provides high sensing accuracy
and good signal-to-noise ratio, some scar tissues can be
formed after surgery causing weakness in the acquisi-
tion of the brain signal and a severe medical state [4].
The non-invasive sensing technique works by installing
the electrodes in external headset placed on scalp to
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capture the brain signal. It is a reliable and efficient
method for ordinary users and severely/partially par-
alyzed patients to get back forms of communication
and control of external devices [5] and [6]. There are
several models of BCI headsets that have wide poten-
tial to be used as support technologies and new con-
trol methods. These devices capture the activities of
the human mind from the scalp and decode it with ma-
chine learning methods [7]. NeuroSky company has de-
veloped a special algorithm for deriving attention and
meditation signals from EEG signals [8]. Attention and
meditation signals represent concentration and relax-
ation/calmness levels, respectively, and have a signal
range of 0 to 100 integer values and are influenced by
the mental and physical states of individuals.

The BCI system is applied to control the medical
device applications and the examination of neural ac-
tivity characteristics. A prototype WheelChair System
(WCS) presented in [9] is designed to assist individu-
als with disabilities using brain waves based on the
BCI system. The system consists of a NeuroSky Mind-
Wave 2 headset module to capture the EEG signals and
a H-Bridge Arduino controller with PWM Arduino to
control the speed of the prototype. EEG waves are used
to control the WCS in four directions. The WCS’s pro-
totype system provides an accuracy controlling equal
to 73.33 %. In [10], a new authentication procedure for
the Internet of Things (IoT) using EEG signals based
on BCI system is proposed. The method uses Neu-
roSky MindWave 2 to capture the EEG signals and
a camera to detect the gestures of hands. The attention
and meditation levels are employed as switch for the
authentication, and the gestures of hands for control-
ling the authentication’s process. The evaluation re-
sults of the procedure show an accuracy equal to 92 %,
an efficiency of 93 % and acceptable user satisfaction.
The classification of the brain waves into different fre-
quency bands and the attention/meditation detection
accuracy obtained through the distribution of users
into four groups according to the age and gender is pre-
sented in [11]. In that work, the NeuroSky MindWave 2
is used to capture the EEG signals and a Graphical
User Interface (GUI) is implemented to collect, pro-
cess, and analyze their features. The study achieves
an average detection accuracy for attention, medita-
tion, and eye-blink of 47.5 %, 54.25 %, and 48.25 %,
respectively. A BCI system using an Arduino micro-
controller to help the users maneuver a miniature of
WheelChair System (WCS) by non-invasive NeuroSky
technique is proposed in [12]. The system uses atten-
tion, meditation and eye-blink to develop three differ-
ent control algorithms to execute maneuver commands.
In [13], a BCI system is implemented by Arduino mega-
controller to help the disabled users to control printing
letters of keyboard system by non-invasive NeuroSky
technique. The attention and eye-blink are used to
develop controlling algorithm to execute the printing

commands. In [14], a prototype of brains warm in-
terface controls a swarm of a drone using Steady State
Visually Evoked Potentials (SSVEP). An experimental
environment is designed to extract and collect the EEG
signals, which are classified using machine learning for
various flight scenarios: hovering, splitting, dispersing,
and aggregation. A robot-car and home appliances are
controlled with brain signals using NeuroSky mobile 2
in [15]. A micro-controller is employed to distribute
and recognize the controlling signals. The attention
and meditation signal levels are used to control the
change in the movement and the direction of the robot-
car, while the eye-blink is used for switching on/off
home appliances. The aim of this research is to develop
an algorithm based on attention level and eye-blink sig-
nals to control a drone using brain waves collected by
the single-channel NeuroSky MindWave 2 device. The
algorithm includes two possible control procedures, the
one-layer control which is based on eye-blink only, and
the two-layer control based on both attention level and
eye-blinking. Also, a dynamic thresholding for atten-
tion level classification is used to improve the accuracy
of the algorithm. The remainder of the paper is orga-
nized as follows: in Sec. 2. the general concept of
BCI system is introduced. The methodology adopted
for development of the algorithm is explained with de-
tails in Sec. 3. and Sec. 4. The experimen-
tal results are presented and evaluated in Sec. 5.
Finally, in Sec. 6. the conclusions are drawn.

2. General Framework

2.1. BCI System

A typical BCI system consists of four components
which are: signal acquisition, feature extraction, fea-
ture translation commands, and device output [16].
The brain signals are detected and treated during the
signal acquisition step. These signals are acquired from
the user’s scalp using sensors, which are covered with
multi-electrode array. The acquired signals are pro-
cessed to be suitable for feature extraction. High pass,
low pass and notch filter are the most used filters in the
acquisition/processing step and work to remove noise,
artifacts and extract the desired frequency band. Also,
the filter can be combined with other components such
as amplifiers to improve the SNR and amplitude of
the signals [4]. In the feature extraction several meth-
ods are applied for extracting feature and classifying
the brain signals. Linear classifier, non-linear classi-
fier, nearest neighbor classifier, neural networks or their
combinations are used as classification method. Re-
cently, the most widely used method for classification
and feature extraction is neural networks [4]. After
the signals are classified, the next step is the feature
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translation algorithm. In the feature translation al-
gorithm, the classified signals are converted to binary
codes based on the threshold value determined by ex-
perimental tests. These binary codes are applied to
execute commands according to the user’s intent [10].

2.2. ElectroEncephaloGram (EEG)

The EEG is an observation technique to read and
record the brain signals [17]. The brain signals are
classified based on their electrical activity into three
types: spontaneous activity, Evoked Potentials (EP)
and the bioelectric events produced by a single neu-
ron [18]. EEG is the most popular non-invasive method
of spontaneous wave acquisition, and it has several ad-
vantages over other neuroimaging processes by provid-
ing simplicity, low cost, fast response, and ability to
be implemented in many applications [4]. The EEG
headset captures the brain waves in different frequency
bands using various channels according to the elec-
trodes map. Generally, EEG signals are affected by
noise and other environmental influences, resulting in
signal distortion and reduction in SNR during signal
acquisition [19]. The EEG Brain signals are divided
into five waves according to the frequency bands based
on the mental state, which are: Delta, Alpha, Theta,
Beta and Gamma.

2.3. NeuroSky MindWave 2

The NeuroSky device uses single channel flexible dry
electrode sensor to extract and collect the EEG signals
from the pre-frontal left position (Fp1) of the scalp.
Owing to the location with minimum hair and proxim-
ity to the eye, it provides EEG and eye-blink signals as
shown in Fig. 1.
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Fig. 1: NeuroSky MindWave 2 device [20].

Due to EEG signals’ weak amplitude (10–100 mV),
and noise sensitivity during the extraction stage, a pre-
treatment circuit is required to improve the SNR and
the quality of the EEG signals [21]. The block diagram
of pre-treatment circuit is shown in Fig. 2.

Preamplifier Filter Postamplifier

UART A/D converter

Analog
Signal

Digital
Signal

Fig. 2: Pre-treatment circuit block diagram.

The pre-treatment circuit consists of a pre-amplifier
stage, a filter, a post-amplifier, an Analog-to-Digital
converter (A/D), and a Receiver/Transmitter interface
(UART). The pre-amplifier is used to amplify the EEG
signals by 8000 times. The EEG signals ranging in
0.5–100 Hz bandwidth are exposed to distortions due
to the muscle movements and environmental effects.
Thus, the filtering unit comprised of analog and dig-
ital low and high pass filters is used to eliminate the
50/60 Hz AC powerline interference, and other distor-
tions to retain the signals in 0–50 Hz bandwidth range.
The filtered EEG signals are amplified by the post-
amplifier block with gain equal to 2000, before passing
to the A/D converter. In A/D converter the EEG sig-
nals are sampled at 512 Hz and coded with 12 bits and
transmitted over a Universal Asynchronous Receiver
and Transmitter (UART) interface using HC-06 Blue-
tooth module [21] and [22]. The formula for converting
raw values to voltage is given by:

voltage =
raw value · Vi

212

G
, (1)

where G is the gain of the post-amplifier, Vi is the
maximum input voltage equal to 1.8 V.

3. Methodology

In this section, the drone movement control details,
acquisition and classification of signals, conversion to
commands and implementation of the algorithm are
mentioned. The EEG signal is processed by NeuroSky
MindWaves 2 device before transmission to the PC.
The Integrated Development Environment (IDE) pro-
cessing is used to design a Graphical User Interface
(GUI) for projecting and supervising the coming sig-
nals from the NeuroSky. The GUI is also used to
record the attention and eye-blink signals in an Ex-
cel database. The collected data of eye-blink is used to
define the threshold value by machine learning based
on Support Vector Machine (SVM) classification algo-
rithm. The obtained threshold value is used to train
an Artificial Neural Network (ANN) to sort each eye-
blink of a 4 consecutive eye-blinks input as logic "1"
or logic "0" according to the strength of the partici-
pant’s eye-blink and output a 4-bit binary code. Since
the attention signal levels are related to the concentra-
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tion of the person under test, and the observation pe-
riod, the Linear Regression Method (LRM) is used for
the classification of signals yielding a dynamic thresh-
old. The 4-bit eye-blink codes and attention level are
used to control the drone’s movements (take off, land-
ing, left, right, up, down, forward, backward and stop).
The block diagram of the adopted method is shown in
Fig. 3.

Signals 
Quantification

LRM / SVM /
ANN

Classification  Drone control  

Fig. 3: Brain-drone interface block diagram.

3.1. Signals Quantification

According to the output of NeuroSky there are 4 sig-
nals, which are attention signal, meditation signal,
EEG signals and eye-blink signal. In general, there
is a strong correlation between attention and medita-
tion signals because they both characterize concentra-
tion and relaxation of an individual. The selection of
attention level instead of meditation is based on the
complexity of meditation process, which requires more
training, and sustainable relaxation-concentration pro-
cess during the experiment [23]. In the NeuroSky out-
put, the five EEG signals (delta, alpha, theta, beta,
and gamma) are represented by eight waves namely
Theta, Low Alpha, High Alpha, Low Beta, High Beta,
Low Gamma, and Mid Gamma. However, the most
related waves to human mind states are those related
to α, β, δ, and θ signals [24]. The energy value (Ex)
of each signal can be determined by using the sum of
signals power (Pfreq) depending on frequency ranges,
the frequency ranges of the signals are as follows [24];
Eδ: 0–4 Hz, Eθ: 5–7 Hz, Eα: 8–13 Hz, Eβ : 14–40 Hz
and Eγ : 41–200 Hz. The correlation between α and β
is exploited to derive the ratio equation as a feature to
evaluate the mental attentiveness level [25]:

R =
Eα

Eβ
. (2)

3.2. Command Based on Eye-Blink

The eye-blink signals are used to generate control com-
mands according to the blinking intensity strength. For
an accurate determination of the blinking threshold,
five individuals with different ages are required to gen-
erate six successive reading for each one. Individu-
als are asked to produce three slight blinks and three
strong blinks in a random order. The collected data
is analyzed and classified using SVM algorithm result-
ing in an optimal threshold of 72 eye-blink intensity.
The threshold separates eye-blink into two blink classes
(strong or slight) as shown in Fig. 4.
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Fig. 4: SVM classification.

Four consecutive eye-blinks are randomly collected
from the participants. These consecutive eye-blinks
are used as input data for the ANN trained with the
threshold obtained from the previous step, and each
eye-blink is sorted as logic "1" or logic "0". ANN out-
puts a 4-bit binary code for every four consecutive eye-
blinks input. The block diagram of adopted ANN net
is shown in Fig. 5.
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Fig. 5: The adopted ANN block diagram.

Four blinking sequence is used to produce
a 4-bit code according to the selected motion as
follows: "Take off/1111", "Land/0000", "Up/1001",
"Down/0110", "Forward/1110", "Backward/0001",
"Right/0011", "Left/1100", "Stop/1010". Each eye-
blink code is generated during a period of 5 seconds,
which has been set based on a series of experimental
tests for different individuals.

3.3. eSense Attention Level
Classification

The attention levels’ data collected is determined by
performing tests to five individuals for five different
time intervals as illustrated in Fig. 6.

From the Fig. 6(a), the best interval for collecting at-
tention levels’ data can be defined as 10 seconds. After
10 seconds, irregular fluctuations start occurring due
to the lack of concentration of the individuals under
test. After data collection, Linear Regression Method
(LRM) is applied to locate the threshold value of the
attention level. The LRM is a statistical method to
give the best linear approximation of the experimental
data through the relationships between two continu-
ous variables or factors. It is used here to give the
dynamic threshold value between strong and weak at-
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Fig. 6: Attention levels of the five individuals.

tention level according to the collected data in Tab. 1.
The general form of the LRM equation is given by:

y = ax+ b, (3)

where y is the dependent variable, x is the independent
variable, a is the slope, and b is the y intercept. The
constants a and b are calculated using the collected
data as follows:

a =

N∑
i=1

(yi)
N∑
i=1

(
x2
i

)
−

N∑
i=1

(xi)
N∑
i=1

(xiyi)

N
N∑
i=1

(x2
i )−

(
N∑
i=1

xi

)2 , (4)

b =

N
N∑
i=1

(xiyi)
N∑
i=1

(xi)
N∑
i=1

(yi)

N
N∑
i=1

(x2
i )−

(
N∑
i=1

xi

)2 , (5)

where xi is data collection time, yi is the average of
the experimental attention levels of the five individuals
and N is the number of readings: here equal to 11.
After the calculation of a and b, the dynamic threshold
equation of attention level can be given as:

y = 3.2016x+ 65. (6)

Tab. 1: Calculation of LRM constants.

xi yI
i yII

i yIII
i yIV

i yV
i yi x2

i xiyi

1 34 24 54 29 56 39.4 1 39.4
2 63 72 56 53 93 67.4 4 134.8
3 83 91 74 77 100 85 9 255
4 96 100 96 87 100 95.8 16 383.2
5 100 100 93 84 100 95.4 25 477
6 88 97 100 81 91 91.4 36 548.4
7 91 85 96 96 90 91.6 49 641.2
8 87 88 94 96 80 89 64 712
9 90 93 90 90 88 74.2 81 667.8
10 97 81 90 83 95 89.2 100 892
11 81 84 97 96 100 93 121 1023

The static attention level threshold is determined to
be 85 based on the recorded experiment for an observa-
tion period of 10 s. It is seen that the attention levels of
five individuals stabilized above 85 after 3 to 4 seconds
in a critical linearity. The dynamic threshold is de-
termined as 65 using Eq. (6) derived from the applied
LRM. The improvement in the attention level identi-
fied by the dynamic threshold compared to that of the
static threshold (y = 85) is shown in the Fig. 7, and
the comparison between the two thresholds is given in
Tab. 2.

4. Algorithm Development

Binary codes from the attention level (1-bit) and the
eye-blink (4-bit) are exploited to develop an algorithm
based on two controlling layers as depicted in Fig. 8.
The first control layer uses eye-blink code, while the
second control layer uses the attention level code. The
first control layer is adopted to perform the frequent
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Tab. 2: Comparison of threshold types. Cells in red present faulty readings of attention level.
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Fig. 7: Dynamic and static thresholds of attention level.

motions (left, right, stop, up, and down) whereas both
layers are adopted for implementing the important and
critical motions (forward, backward, and takeoff) in
a successive manner. The first active eye-blink trig-
gers a timer for 5 seconds to generate an eye-blink
code. Then, related to the motion to be performed,
the attention level can be detected during an observa-
tion period of 7 seconds. If the attention level is greater
than the detected dynamic threshold for 3 seconds, the
second control layer is executed; otherwise, the device
proceeds with the current motion. The presented al-
gorithm is used to control various motions of a drone
according to generated codes from mind signals. As
soon as the devices are connected, the drone is ready
to receive the takeoff command using both control lay-
ers. After takeoff, the drone is on hold to take the
next movement commands. After receiving 0000 eye-
blink code for landing, the drone goes down and after
a 15-second wait time the device turns off.

5. Experimental Results

The evaluation of the system is carried out by includ-
ing individuals with ages between 20–30 in the test ex-
periment. The individuals are placed in a comfortable
position and in a quiet environment free from negative
factors. The test requires participants to make three
attempts for each movement, and the average time for
the movement performed is calculated.

The participants exhibit different average times for
mental attentiveness and eye-blinking speed as shown
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Fig. 8: Drone control algorithm.

Tab. 3: Average Elapsed Time (AET) for each individual.

Motion S1 S2 S3 S4 S5 AET
takeoff 12.4 12.2 11.6 11.3 13 12.1
land 3.7 3.63 4.4 3 4 3.746
up 4 3.31 3 3 4 3.462

down 3.82 3.8 4 3.45 3.2 3.654
right 4 3 3.7 4.2 3 3.58
left 3 4.3 3.6 3.4 4.2 3.7

forward 11.87 11.6 12 12.43 12.77 12.134
backward 12.8 12 11.75 11.5 11.9 11.99

stop 3 3.8 4 3.5 3.7 3.6

in Tab. 3. Also, the table presents the average elapsed
time required to perform each motion. Note that the
average times of eye-blinking and attention level code
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Tab. 4: Drone control algorithm accuracy.

Motion S1 S2 S3 S4 S5 Accuracy
takeoff 2/3 3/3 3/3 3/3 3/3 93.33 %
land 3/3 2/3 3/3 3/3 3/3 93.33 %
up 3/3 3/3 2/3 3/3 3/3 93.33 %

down 3/3 2/3 3/3 3/3 2/3 86.67 %
right 3/3 3/3 2/3 3/3 3/3 93.33 %
left 3/3 3/3 3/3 2/3 3/3 93.33 %

forward 3/3 2/3 3/3 3/3 3/3 93.33 %
backward 3/3 3/3 3/3 2/3 2/3 86.67 %

stop 3/3 2/3 3/3 3/3 3/3 93.33 %
96.2 % 85.1 % 92.5 % 92.5 % 92.5 % 91.85 %

Tab. 5: Comparison of performance of different algorithms.

Number of
control commands

Control
layers

Control
parameters

Error
rate Accuracy

Present work 9 one & two 4-bit eye-blink & attention 8.15 % 91.85 %
[9] 4 one EEG waves 26.67 % 73.33 %
[21] 3 one attention 15 % 85 %
[26] 3 one 1-bit eye-blink 18.33 % 81.67 %
[27] 4 two 2-bit eye-blink & attention 17 % 83 %
[28] 4 two 2-bit eye-blink 15 % 85 %

generations based on Tab. 3 are determined as 5, and
10 seconds (7 seconds for threshold detection and 3 sec-
onds for obtaining the code), respectively. The experi-
mental results for the performance accuracy of all mo-
tions are shown in Tab. 4. Also, the table gives the
average accuracies obtained for each motion and each
participant in the test experiment.

The test is performed with 15 movements (3 per per-
son) in total. The Takeoff, Land, Up, Right, Left, and
Forward motions show 14 out of 15 success-controlled
attempts with 93.33 % accuracy. The Down and Back-
ward motions show 13 out of 15 success-controlled at-
tempts with 86.67 % accuracy. The total average con-
trol accuracy per participant is between 96.28 % and
85.18 %, and the total average performance of all move-
ments is about 91.85 %. The comparison of the de-
veloped algorithm with the previous works in terms
of commands issued, control layers, error rate, and
accuracy, is shown in Tab. 5. All previous selected
works use a static threshold value and fewer bits for
eye-blink. The algorithms they developed are derived
based on one or two control layers represented by atten-
tion, meditation, EEG signals and/or eye-blink signals.

The results show that the proposed algorithm with
91.85 % accuracy, has a much higher performance than
the others. Additionally, the number of commands con-
trolling the movements of the drone has been signifi-
cantly increased.

6. Conclusion

A new algorithm using EEG waves collected and trans-
ferred by a BCI system is presented. The proposed

algorithm is developed to control the movements of
a drone by eye-blinking and attention level signals. The
algorithm is configured with two control layers. The
first layer uses eye-blink signals classified by an SVM
and generated as 4-bit code by an ANN. The second
layer categorizes the attention levels with 1-bit code by
specifying a dynamic threshold with LRM. The algo-
rithm is validated by a test experiment using the single
channel NeuroSky MindWave 2 device. The proposed
algorithm shows a high performance with 91.85 % ac-
curacy. Moreover, the algorithm offers a capability of
performing 16 commands making it suitable for vari-
ous applications such as wheelchair, robot arm, smart
home, etc.
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