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Summary We continue in our brief review of rigorous results on the finite-size effects near first-order phase transitions with
a two-phase coexistence. We again consider the large class of statistical mechanical models in (hyperjcubic volumes and at

fow temperatures that can be analvzed with the fn,ép of the Pirogov-Sinai theory. This time, however, we consider a more

realistic case of weak fixed boundary conditions. A universal behavior of the a

smiptotic smoothing of the phase transition

discontinuities as well as the determination of the transition point from the finite-size data is presented.

Abstraki Pokra¢ujeme v naSom kratkom prehlade rigordznyeh visledkov o efektoch koneéného objemu blizko fizovych

prechodov prvého druhu s koexistenciou dvoch faz. Opit uva
{hyperikubickych objemoch a pri nizkych teplotich, ktoré sa dajt ana

jeme velka triedu modelov $tatistickej mechaniky v
oval pomocou Pirogovej-Sinajovej tedrie. Aviak

tentoraz uvazujeme realisticke)$i pripad slabveh okrajovyeh podmienok. Je uvedené univerzalne chovanie asymptotického
vyvhladenia nespojitosti fizovych prechodov ake aj urtenie bodu prechodu z kone¢noobjemovych dat

1 INTRODUCTION

First-order phase transitions are characterized by
discontinuities of extensive macroscopic observables
(like the internal energy or magnetization) in the
thermodynamic limit when the size of the system
tends to infinity. Nevertheless, in real, finite systems
the jumps are smoothed out and. possibly. shifted
with respect to the infinite-volume transition point.
In this paper we briefly discuss the rigorous results
obtamed in Ref. [1] on these finite-size effect for -

dimensional cubic systems of size L. where d>2.
Instead of the general coexistence of several phases
studied in Ref. [1], we will restrict ourselves to the
case of just two coexisting phases.

The details of the finite-size effects depend
crucially on the choice of the boundary conditions
that, in turn, depend on the considered physical
situation. The simplest case are periodic boundary
conditions. However, free boundary conditions,
constant boundary conditions, and. more generally,
boundary conditions  with boundary fields are
physically more realistic, although more difficult to
analyze. Yet. in the case of fixed constant boundary
conditions, where it is necessary to examine the
balancing effect of the boundary conditions versus
the opposite driving foree (like an external magnetic
field), the rigorous analysis has been carried out by
Borgs and Kotecky [ 1] Still, they had to assume {hy
b(‘sutéddrx conditions to be sufficiently weak (“close”

to the free boundary conditions). It is this case of

boundary conditions that we will be considering in
this short survey.

The analysis ﬁmm Ru‘ [1] is based on the
Pirogov-Sinai  thet first-order  phase
transitions, and the results are therefore applicable to
all the models tractable by the theory. The models
include, in particolar, spin lattice models with a
finite number of ground states and finte-range
interactions (such as the Ising model) at sufficiently

low temperatures and the g-state Potts models with ¢
sufficiently large. An important feature of the
analysis is that it can deal with both the field- as
well as temperature-driven phase transitions within
the same framework. Here we will have in mind the
former case. An instance of a temperature-driven
transition was investigated in Ref. [4].

In the next secion we will present and discuss
the results on the finite-size effects from Ref. [1].
The paper 1s closed with several concluding remarks
in Section 3.

2, SURVEY OF RESULTS

Let us consider the Pirogov-Sinai type of a
statistical mechanical model, that 1s, a model whose
partition function 1s equivalent to that of a hard-core
gas of boundaries, called contours, that separate the
model’s ground states (this covers a remarkably
large class of models), see the Introduction and
Ref. [5] for more dumnfs The system is confined to a
d-dimensional cube of side L and is allowed to
interact with its surroundings in such a way that this
interaction does not strongly prefer any of the
ground states inside the cube (“weak” boundary
conditions).[ 17"

The model is assumed to have two ground states

with the degeneracies #1,.71, 21 and with the

. 1 . .
energies £, and }; , respectively. The energies
are smooth faﬁcii@m of a parameter h (say, an
external magnetic field), and it is p{)xﬂ;blc to write
bulk-surface expansions for them (at least for large
L). Namely, there are the bulk energy densities

; Mostly, this rcc;a}‘*cm{fm means that the strength of the
boundary i@s eractions is small enough compared to the
strength of the bulk interactions (the boundary conditions
are close to the free ones), but it may not be quite so0.[4]
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e,(h). i=1.2, of the two ground states and their

surface energy densities 5, (/1) such that

E,(h)y=e (ML +s5,()L"" +0(L"), )

where the symbol O(x) stands here and below for an
error term that can be bounded by x with the
constant depending only on the dimension d (the
bounds are uniform in 3, L, and /).

Whenever the presence of the contours is
energetically sufficiently unfavorable (the Peierls
condition[5]). that is, whenever the temperature is
low enough, each ground state gives rise to a single
phase with a structure very similar to the structure of
this ground state. Therefore, assuming the inverse
temperature [3 = mlm and L sufficiently large, the

v

B
partition function of the system can be expressed
asfl]

~fEh 1F; m X
Z,(hy=ne " 4 pe 2

i 2 ; e
Here F, and F, are some “meta-stable” finite-
volume free energies smooth in /A that, by
construction,  only  little  deviate from  the
corresponding ground-state energies F| , and E

the sense that they possess the same kind of a bLllk~
surface expansion as in Eq. (1),

Fl(hy= f(WL +7,(00L" +0(L" ), 3

The bulk and the surface “meta-stable” free energy
densities satisty

‘f" (hl) P (}{ (;Z) e 0({3 —onst B )‘ ()
7. () =5, (h)+ O ") (5)

(the error terms O(e ™) can be explicitly
evaluated), and similar relations hold for their
derivatives. In addition, the true specific free energy

i
1 f(h)= m,“@*&lﬁ* Mﬁln Z, (h) exists

of the mode

and f(h) = min{f,(h), f, (W)}

Egs. (2) to (4) provide a detailed control over the
partition function Z, (1). Notice that the presence
of the system’s boundary is the main difference with
respect to the periodic boundary conditions case: it

implies the presence of surface terms in f (for
periodic boundary conditions one simply Ema{i”s 6]

J). As a consequence

the degeneracies  #,. i=1L2. are essentially

insignificant since they can be absorbed in F) .

1, = 0(1).

changing it only by —logr

Of course, all the mfinite-volume properties of
the system are independent of the imposed boundary
conditions and remain the same as for periodic
boundary conditions.[5] Thus, if there exists a
e (h) and e,(h)
coincide and the label i=1,2 is chosen in such a way
that, say,

unique point /1, at which

)
;9%1— (¢, —e,) <0, (6)

there exists a unique point /1, at which f, () and
f>(h) coincide, and f(h) = f,(h) for h2h, ,
while f(h) = f,(h) for h <h, . Moreover,

o |
é—h'(/z - f3)(h, ) <0. )

In other words, ;1'; is the infinite-volume transition

point, and, by Eq. (4). one has
- —egnst 5

h =h, + 0 ") (the error term can be
H (] 3 ;

explicitly evaluated).

On the other hand, the behavior of finite-volume
quantities is, in a way, quite different. Indeed, let us
introduce

1 dm, ()

n;LUz}www InZ, (), x (H=— I
L oh £ oh

(8)
the guantities that represent the first and the second
derivative of the finite-volume free energy (such as
the specific magnetization and the specific
susceptibility of a  finite magnetic  system).
Moreover, let us define the universal (independent
of boundary conditions) numbers

ofth) . -9

f??] e R £ S - s

oh ) doh
9 f(h)
v, = -t and y, = —-—t—" The
A oh- i oh” .

the following is true.[1] There is a unique point

. (L) at which ¥, atains its maximum, and




105

First-order phase transitions in finite systems I1...

«

AF
max(*{*‘} - z? + jmmm_ ‘ 1+ (}{Lt }]
(m, —m,) AL

1,
ln - s
n + 6(/2:,[ —X)

(m, =m,) B (my—m,)’ B L

+O(L™),

9)
where AF, = F!(h )~ F(h

term on the right-hand side that makes /1, (L) to

. ). It is the second

be different from the periodic boundary condition
case, where it is not present.[S] Since

fith)= f:: (h,), we have AF, = O(L™), and

the shift h, (L)—h, is of the order L.
Explicitly,
2dA1
m;\fL)Mii +m”£—_%[ +0(L )] (10)
(m, —m,) L

where A7 =17,(h,)—1,(h,) plays the role of a

“surface tension” between the two coexisting phases
and is usually (for asymmetric models) non-zero.
The last two equations enables us to trace the

position of the transition point /1, , if finite-size data

are Ziver.

C
In addition, if & is in the interval | — 1, |< 7

(the value of the constant C is not essential, just the
fact that /1, (L) lies in this interval), then m, (h)

HEX
smoothly interpolates between the values m, and
#1,. the interpolation being given by the function

tanh, whereas ¥, (h) has the shape of a spike

approximated by the function cosh ™
m,+m, -,
2. 2

9 2

A

m, (h)=

x{zznh[ﬁu( h (INL'1+0O(L™),

(1
2.0 = (Mz1 mﬂ: 7
{,6”’1 2 (h=n (L)L O,

(12
The width of rounding of m , between m 1o 1, is

of the order L™
this region, that is, the §“luf'h{ of the spike ex uE}its;d

by 7, .is of the order L” .

. implying that the slope of 11, in

T'his enormous height of

A, is aresult of the presence of the phase transition
{one would expect a height of the order(5] O(1))

From Eqgs. (9) to (12) we see that the role of the
weak boundary conditions is practically limited to
(L). Thus, a different
choice of weak boundary conditions results in a
possible move of the functions m, (h) and y, (/1),

the position of the point /1

but their tanh and cosh ™ profiles remain basically

unchanged.
C
Finally. if |h—h, !>1~, then 7, and %, are
very well approximated by their infinite-volume
limits,
A .
;n{'{;;} o fa(z) )Ne mn!/}l) (13)
(} f(/l) ..... const
X (h)=——5> Y O™, (14
'l

as in the periodic boundary condition case. Fig. |
depicts  schematically the results contained in
Egs. (9) 1o (14).

xrih)
m myp )
)2(
- % Minas L}r‘i h
g

Fig. 1 Aninfinite-volume observable lw that is the first
derivative of a thermodynamic potential exhibits a jump
between M, and N, However, the jump is smoothed out

1 2
in dts finite-volume version 1. The second derivative of a
thermodvnamic potential 2 has the shape of a spike in a
Sfinite volume, while it has a singularity of the d-function
type (not shown). lts maximum position ]lmx is in
general shifted with respect to the infinite-volume

transition point k: .

3. CONCLUDING REMARKS

In this paper we gave a short survey of the
rigorous results obtained in Ref. [1] on the finite-
size effect near first-order phase transitions for d-
dimensional cubic systems with weak boundary
conditions. The situation of a field-driven transition
with a two-phase coexistence was discussed. We
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took into account possible degeneracies 71, and 71,
of the two ground states {711, = J1, = | inRef. [1]1s0
that the terms containing In— are all equal to zero
1,
there). We compared this situation with the case of
periodic boundary conditions[3] and demonstrated
that the main difference between the rounding of
finite-volume observables in the two cases was in
the position of the rounding with respect to the
infinite-volume transition point. The shift is of the
order L7 in the case of weak boundary conditions,
while it is only L™ (or ™" if n, =n,) in the
case of periodic boundary conditions. For both types
of boundary conditions the first derivatives of a
thermodynamic potential were in finite volume
smoothed out according to the function tanh. The
profiles of higher-order derivatives are determined
by the corresponding higher-order derivatives of

tanh (that is, cosh ™ for the second order, ete.).
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