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Abstract. This paper presents a study of a robust con-
trol strategy based on the Attractive Ellipsoid Method
(AEM) to achieve trajectory tracking for a Perma-
nent Magnet Synchronous Generator (PMSG). For the
PMSG system, trajectory tracking control is necessary
such that the maximum power point tracking can be
carried out, which depends on controlling time-varying
references (the generator angular speed), mainly when
the generator motion is originated from a variable and
intermittent energy source such as the wind. The pro-
posed controller is based on the selection of the best
gain matrix by numerically employing the AEM with
the bilinear matrix inequality technique application.The
controller guarantees that the trajectory tracking error
reaches an ellipsoid of small enough size, which is de-
termined in an optimized way, such that the practical
stability for the tracking error is ensured. The effec-
tiveness of the proposed controller is verified via simu-
lations for a PMSG coupled with a three-phase rectifier,
where the variables to be controlled reach the desired
time-varying references, additionally a comparison is
made against a classical Proportional Integral (PI) con-
trol scheme and a state feedback LQR controller.
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1. Introduction

The wind energy conversion systems (WECS) are com-
plex, highly nonlinear systems that require control
strategies to fulfill different tasks as the pitch angle
control, maximum power extraction by means of Maxi-
mum Power Point Tracking (MPPT) algorithms, speed
controllers for the electrical generator, among others.
These control objectives involve the stabilization and
tracking of some desired system trajectories as speed,
current, voltage, etc. Particularly, tracking has a spe-
cial role in the wind energy conversion process due to
the need of extracting the maximum available power
in the wind at all time. The most common parameters
used to track the maximum power point in WECS are
the torque, speed and current [1, 2, 3].

In the recent years, the WECS have integrated the
PMSG almost at the same rate than the Doubly Fed
Induction Generator (DFIG). The main advantages of
PMSG configuration are its gearless construction, high
reliability and efficiency, and the elimination of the DC
excitation system because the field is provided by the
permanent magnets. Among the research developed
for PMSG-based systems one can find works related to
classical control schemes based on linear control the-
ory such as the vector control, which is almost entirely
based on PI controllers [4, 5].

Owing to the presence of disturbances, parame-
ters variations, load changes and nonlinear models in
WECS, robust and adaptive control strategies have
also been applied to improve the system performance
[6, 7, 8]. Sliding modes control is one of these ro-
bust strategies used to control PMSG-based WECS,
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obtaining good results for the desired control objec-
tives [9, 10].

Among the robust control techniques one can find
the controller design based on the Attractive Ellipsoid
Method (AEM) which is a tool mainly used in con-
trol theory for the design of robust feedback controllers
with respect to a wide class of uncertainties in the
model description. When uncertainties are present in
a model, the system motion stabilization to zero is not
always possible, and only boundedness of trajectories
within some compact set is guaranteed. This bounded-
ness is frequently provided by invariant sets. One way
to obtain this characteristic is the invariant ellipsoid
method which is named attractive ellipsoid method if
this condition is guaranteed for all initial conditions
[11, 12]. The AEM entails the representation of the
control problems in terms of Linear or Bilinear Ma-
trix Inequalities (BMI) which can be solved with semi-
definite programming or BMI specialized solvers. Most
applications of AEM address the stabilization problem
[12, 13] and there are few works related to the trajec-
tory tracking. In [14] the AEM for trajectory tracking
in discrete-time stochastic systems is addressed.

This paper proposes the design of a robust controller
based on the AEM to achieve trajectory tracking for
nonlinear systems. The ellipsoid size is determined in
an optimized way such that the tracking error remains
inside a small region through of the synthesized con-
troller, fulfilling a practical stabilization of the tracking
error. Simulation results for a PMSG-rectifier system
are presented to illustrate the robustness of the devel-
oped control methodology. Additionally, the perfor-
mance of the proposed scheme is compared against a
classical PI-based control scheme and a state feedback
LQR controller.

2. PMSG system modeling

This section presents the system under study for which
the AEM will be developed. The whole system to be
modeled is composed by the PMSG, a three-phase rec-
tifier and the control system, as depicted in Fig. 1.

A common representation of the PMSG dynamics
is through the Park model also known as dq reference
frame model. The PMSG stator voltage equations are
expressed in the synchronous dq coordinates as [15]{

Vds = Rsids − ωrLqsiqs + Lds
dids
dt

Vqs = ωrLdsids +Rsiqs + Lqs
diqs
dt + ωrλr

(1)

where Vds, Vqs, ids, iqs are the d and q axes stator
voltages and currents respectively; Ld and Lq are d
and q axes inductance, Rs is the stator resistance, λr

is the magnetic flux and ωr is the electrical angular
speed.
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Fig. 1: Block diagram of a PMSG-based generation system

. From model (1), the stator currents can be ex-
pressed as

d

dt

[
ids
iqs

]
=

[
− Rs

Lds

ωrLqs

Lds

−ωrLds

Lqs
− Rs

Lqs

] [
ids
iqs

]
(2)

+

[
1
Lds

0

0 1
Lqs

] [
Vds
Vqs

]
+

[
0

−ωrλr

Lqs

]
.

The electromagnetic torque for a generator with sur-
face mounted permanent magnets, where the d and q
axes inductances are equal, can be expressed as

Te =
3

2
pλriqs. (3)

The mechanical angular speed dynamics of the
PMSG are given as

J
d

dt
ωm + Fωm = Te − Tm (4)

where J is the shaft moment of inertia, ωm is the rotor
angular speed, F is the viscous friction coefficient, Te
and Tm are the electromagnetic and mechanical torque,
respectively. The mechanical rotor angular speed ωm
is related to the electrical angular speed (ωr) and the
number of poles (p) of the PMSG as ωmp = ωr.

Finally, the complete system model becomes

d

dt

ωrids
iqs

 =

 −Fωr

J +
3λrpiqs

2J

−Rsids
Lds

+
ωriqsLqs

Lds

−λrωr

Lqs
− ωrLdsids

Lqs
− Rsiqs

Lqs

 (5)

+

 0 0
1
Lds

0

0 1
Lqs

[Vds
Vqs

]
+

pTm

J
0
0

 .
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The system model (5) is a nonlinear model due to
the interaction among system states, therefore classi-
cal linear techniques as PI controllers will have a lower
performance. Hence, the use of a modern control tech-
nique as the AEM is proposed.

3. Attractive Ellipsoid Method

This paper deals with the design of a robust feed-
back control scheme for trajectory tracking in nonlinear
systems based on the, so-called, Attractive Ellipsoid
Method which provides convergence of system trajec-
tories from any initial condition to a positively invari-
ant set, named ellipsoidal set, for a class of nonlinear
models even in the case of incomplete system informa-
tion or in the presence of external disturbances. This
ellipsoidal set possesses minimal properties related to
the ellipsoid size, volume, etc. These properties may
be used in the design of feedback control strategies for
a variety of applications, as shown in [16, 17].

3.1. Mathematical Preliminaries

This subsection presents basic definitions and impor-
tant results needed for the synthesis of the AEM.

Let us consider a general nonlinear system described
by

ẋ = f(x, u) (6)
x(0) = x0 ∈ Rn

where g : Rn × Rm → Rnis a suitable right hand side.

The class of systems which are suitable for the pro-
posed feedback controller design are limited to a spe-
cific class of nonlinear systems named quasi-Lipschitz
dynamic models with bounded uncertainties. The for-
mal description of the quasi-Lipschitz function is pre-
sented as follows [18].

Definition 1. Quasi-Lipschitz function A vector func-
tion f : Rn → Rk is said to be a quasi-Lipschitz func-
tion C(A, c0, c1) if there exists a matrix A ∈ Rk×n
and nonnegative constants c0 and c1, such that for ev-
ery x ∈ Rn, the following inequality holds:∥∥f(x)−Ax

∥∥2 ≤ c0 + c1
∥∥x∥∥2 . (7)

Taking into account Definition 2 for systems con-
taining nonlinear control actions u, the quasi-Lipschitz
condition can be expanded to incorporate bounds re-
lated to such control inputs. Then, a linear part of the
input (B) can be added to quasi-Lipschitz condition to-
gether with a new variable to bound the corresponding
nonlinear part (c2) resulting in the following form

∥∥f(x, u)−Ax−Bu
∥∥2 ≤ c0 + c1 ‖x‖2 + c2 ‖u‖2 (8)

The constant matrices A and B characterize the
“nominal linear part of a system”, while the nonneg-
ative constants ck (k = 0, 1, 2) define the permitted
deviation of any nonlinearity with respect to the
nominal linear system, which are supposed to be
known a priory. Since function f ∈ C(A,B, c0, c1, c2),
it means that the growth rates of these function is not
faster than linear. To guarantee the control design,
the pair (A,B) must be determined such that the
system is controllable.

3.2. Attractive Ellipsoid for
trajectory tracking

For different applications, the trajectory tracking of
the system variables to a desired reference (set point)
is necessary. To this end, let us define the tracking
error as

e = xr − x (9)

where xr is the desired reference for x. Then, it is nec-
essary to develop a feedback control strategy to fulfill
such objective. This paper proposes the synthesis of a
robust controller defined as

u = K e (10)

where K ∈ Rm×n is the controller gain matrix, which
must guarantees the boundedness of the error trajec-
tories of the closed-loop system (??)–(10), even in the
presence of uncertainties satisfying the quasi-Lipschitz
conditions.

Definition 2. The motion of e in (9), for t ≥ 0,
belongs asymptotically to the attractive ellipsoid

E(P ) = {x ∈ Rn : xTPx ≤ 1, P = PT > 0}

with center at 0, and the corresponding symmetrical
matrix P , if the following inequality is satisfied

lim sup
t→∞

eTPe ≤ 1.

If this ellipsoid exists for a given system, it may be
seen as a generalization of the uniformly ultimately
boundedness (UUB) property, since once the system
trajectories enters to the ellipsoid, they remain inside
but do not converge to a specific point [19].
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4. Feedback controller design
based on the AEM

This section focuses on the problem of designing the
robust controller based on the AEM, with the structure
shown in (10), to achieve trajectory tracking for the
PMSG system (5).

The PMSG model presented in (5) may be rewritten
to obtain the linear nominal part and the nonlinear
part of the system as

f(x, u) = Ax+Bu+ ∆f1 + ζ (11)

with

A =

−FJ 0 − 3pλ
2J

0 − Rs

Lds
0

λr

Lqs
0 − Rs

Lqs


B =

 0 0
1
Lds

0

0 1
Lqs



∆f1 =


0

ωrLqsiqs
Lds

−ωrLdsids
Lqs

0

 .
where x = [ωr id iq]

T and u = [Vds Vqs]
T . Sub-

sequently, the term corresponding to the system dis-
turbances represented by the vector ζ is added to the
nonlinearities vector ∆f1 as

∆f = ∆f1 + ζ =

 0
ωrLqsiqs
Lds

−ωrLdsids
Lqs

+

pTm

J
0
0

 . (12)

The new vector ∆f has to fulfill the quasi-Lipschitz
condition, hence is necessary to know some information
about the PMSG bounds. In the particular case of the
PMSG, the system states (currents, voltages, speed)
are physically limited or bounded by the machine ca-
pacity by means of crowbar systems, braking choppers,
speed regulators among others in order to provide a
safe operating condition. Based on this, the task of
obtaining system bounds can be developed based on
the machine’s capacity and parameters.
Thus, by introducing vector ∆f , system (5) can be pre-
sented as in (??), where the vectors associated to the
nonlinearities of the system and the disturbances are
assumed to satisfy the quasi-Lipschitz condition, as es-
tablished in (7). Once system (5) is presented in the
quasi-Lipschitz form (??), the robust control strategy
can be designed.

The following lemma, considered as one of the main
contributions of this paper, establishes the conditions

for determining the controller gain K and the attrac-
tive ellipsoid.

Lemma 1. If for a positive definite matrix P ∈ Rn×n,
a gain K ∈ Rm×n and the nonnegative constants
α, τ1, c0, c1 ∈ R, the following matrix inequality holdsW 11 W 12 P

W 21 W 22 −P
P −P −τ1I

 < 0 (13)

with

W 11 = (A−BK)TP + P (A−BK) + αP

+ τ1c1

W 12 = −ATP +KTBTP + PBK − αP
W 21 = −PA+ PBK +KTBTP − αP
W 22 = −KTBTP − PBK + αP

τ1 > 0, α > 0

then the storage function

V (e) := eTP e

satisfies the following inequality

V̇ (e) ≤ −αV (e) + β

β = τ1c0

and E(P ) becomes the invariant ellipsoid for the closed-
loop system (??)–(10).

Proof. Consider a quadratic storage function defined
as

V (e) = eTP e, P = PT > 0. (14)

By obtaining the time-derivative of (14), it results in

V̇ (e) =xT (ATP + PA− PBK −KTBTP )x

+ xT (−ATP +KTBTP + PBK)xr

+ xTr (−PA+KTBTP + PBK)x (15)

+ xTr (−KTBTP − PBK)xr −∆fTPxr

+ ∆fTPx− xTr P∆f + xTP∆f.

Introducing a new vector z := [x, xr,∆f ], then (15)
can be represented in matrix form as

V̇ (e) =

 xT

xTr
∆fT

T
W︷ ︸︸ ︷W11 W12 P

W21 W22 −P
P −P 0

 x
xr
∆f


(16)

W11 = ATP + PA−KTBTP − PBK
W22 = −KTBTP − PBK
W12 = −ATP +KTBTP + PBK

W21 = −PA+KTBTP + PBK
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adding and subtracting the terms αV (e), τ1 ‖∆f1‖2 in
the right-hand side of the last equation leads to

V̇ (e) =zT

W1︷ ︸︸ ︷W11 + αP W12 − αP P
W21 − αP W22 + αP −P

P −P −τ1I

 z
− αV (e) + τ1 ‖∆f‖2

(17)

where

−αV (e) =− αeTPe
= −α

(
xTr Pxr − xTr Px− xTPxr + xTPx

)
.

(18)

Taking into account the quasi-Lipschitz condition re-
lated to the uncertain part, ∆f , then (17) becomes

V̇ (e) ≤ zTW1z + τ1

[
c0 + c1 ‖x‖2

]
− αV (e). (19)

Finally, by appropriately rearranging the above
terms, it results in

V̇ (e) ≤ zT

W︷ ︸︸ ︷W 11 W 12 P
W 21 W 22 −P
P −P −τ1I

 z (20)

− αV (e) + τ1c0

W 11 = W11 + αP + τ1c1,

W 12 = W12 − αP, W 21 = W21 − αP,
W 22 = W22 + αP,

τ1 > 0, α > 0.

By determining P andK such that inequalityW < 0
is satisfied, then

V̇ (e) ≤ −αV (e) + β, β = τ1c0. (21)

and E(P ) is the ellipsoid for the closed-loop sys-
tem (??)–(10), which guarantees the convergence and
boundedness of the trajectory tracking error.

4.1. AEM Optimization Problem

The determination of P and K such that the require-
ment of being W < 0 in inequality (20) can be solved
as an optimization problem, which is related to the
minimization of the ellipsoid size, or equivalently, the
minimization of the trace of P under the constraints
defined by τ1, α in (20), formally stated as

min
P,K,τ1,α

trace(P ) (22)

subject to
(
W < 0

)
.

Note that (13) is a bilinear matrix inequality due
to the variables multiplication (this is, αP ), which in-
creases the difficulty to solve the optimization problem.

The solver used in this paper to obtain the solution
of the BMI system 22 is PenBMI from TOMLAB

TM
.

PenBMI is a tool for solving optimization problems
with quadratic objectives and linear and bilinear ma-
trix inequality constraints. The algorithm uses a com-
bination of the exterior penalty and interior barrier
methods with the augmented Lagrangian method, the
interested reader can consult a detailed explanation of
the algorithm in [20].

Remark 1. It is important to note that the solution
of (22) for obtaining P and K is performed offline and
then the implementation of the controller is reduced to
that of a linear feedback controller as shown in (10).

5. Simulation Results

To verify the performance of the designed robust con-
trol strategy, a simulation scheme is developed in the
MATLAB/Simulink environment. Additionally, the
performance of the proposed controller is compared
with respect to the classical vector control based on
PI controllers and a state feedback Linear Quadratic
Regulator (LQR) controller. The selected PI gains are
Kp1 = 10, KI1 = 20, Kp2 = 0.6, KI2 = 3, Kp3 = 12.4,
KI3 = 15. The LQR controller gain matrix was com-
puted in Matlab using the selected linear part of the
PMSG model contained in (11) with weighting matri-
ces Q = diag(500, 500, 500) and R = diag(1, 1), which
results as

KLQR =

[
0 14.2032 0

21.7476 0 18.9564

]
.

The first simulation test is under a constant wind
speed selected at 10.6m/s which develops a constant
mechanical input torque of 2.04N.m. The PMSG-
based system parameters are presented in Table 1. The
initial values are given as x1[0] = 0, x2[0] = 0, x3[0] =
0, while the desired reference values assigned to the
variables of interest (speed and d-axis current) are
idref = 0 A and ωref = 140 rad/s. The constants that
define the quasi-Lipschitz representation of the uncer-
tain parts of the system, that is (7), are selected tak-
ing into account the PMSG parameters, which result
in c0 = 5.02× 103, c1 = 1.0× 103.

Once solving (22), the following values are obtained

KAEM =

[
0.549 −0.587 −0.043

15.6512 5.7102 −0.118

]
.
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P =

0.5004 0.1150 0
0.1150 0.3605 0.0140

0 0.0140 0.1035

× 10−5

τ1 = 6.0442× 10−6 α = 1.05× 10−3.

Tab. 1: System parameters

Parameter Value
Nominal Power 1.1 K.W
Viscous friction 0.001147 N.m.s

Pole pairs 2
Magnetic flux 0.1852 Wb

Inertia 1.854 ×10−4 kg
m2

Stator resistance 1.6 Ω
d-axis inductance 0.006365 H
q-axis inductance 0.006365 H

Capacitance 1.1 ×10−3 F
Load resistance 120 Ω

The trajectory tracking of state x1(t) corresponding
to the rotational speed of the PMSG under the pro-
posed feedback control strategy, the classical PI con-
trol scheme and the LQR controller is presented in Fig.
2. Owing to the fact that the AEM only guarantees a
practical stability of the system, i.e., the boundedness
of the trajectories to a region defined by an ellipsoid,
and not the convergence to a specific point the pro-
posed controller presents stedy-state error. Despite of
the steady-state error, considered here as a practical
error stability, the proposed controller has better tran-
sient characteristics than the PI scheme, such as lower
settling time and lower overshoot. On the other hand,
the proposed controller has smaller tracking error than
the LQR controller while the settling time is similar.
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Fig. 2: PMSG rotational speed.

.

.

The trajectories of state x2(t), corresponding to the
d-axis current of the PMSG, are presented in Fig. 3.
Due to the integral term, the PI controller presents a
smaller steady-state error than the proposed controller
and LQR controller, but is slower to converge to the ref-
erence. The converter voltages developed by the three
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Fig. 3: d-axis current.

controllers are shown in Fig. 4. It can be seen that
the magnitude of the control actions are almost equal
for the proposed AEM controller and PI control with a
slight difference in their settling time, while the q-axis
component of the LQR controller is approximately 10V
down which is directly related with the greater speed
tracking error.
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Fig. 4: Converter voltages in dq-frame

.

In order to highlight the robustness of the designed
controller, the input torque is changed from a constant
value to a variable input on the range of (−2.3,−1.1),
with the form shown in the Fig. 5. This kind of input
will be present in a real wind turbine system due to
the inherent variable nature of wind speed.

.

The response of the rotational speed of the PMSG
and the d-axis current are shown in Fig. 6a and Fig.
6b, respectively. Both figures show the comparison
between the responses of the proposed feedback, the
PI-based and the LQR controllers under the variable
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Fig. 5: Variable mechanical torque signal.

torque signal presented above. It can be seen that the
performance of the PI-based scheme and the LQR con-
troller becomes deteriorated due to the change in the
operating point, while the proposed feedback controller
maintains a good performance.
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Fig. 6: System responses for variable torque case.

.

Finally, Fig. 7 shows the proposed controller capa-
bility to track a time-varying speed reference with a
fast response and small error which are better results
than the PI and LQR controllers. .

6. Conclusions

This paper proposes a robust state feedback controller
based on the attractive ellipsoid method for a PMSG-
rectifier system. The designed controller has simple
structure based on a feedback law, nevertheless, pos-
sesses robustness which improves the performance of
the system and has good tracking capabilities of the
system variables toward the desired references. The

0 1 2 3 4 5 6 7 8 9
Time (s)

0

20

40

60

80

100

120

140

160

180

A
ng

ul
ar

 s
pe

ed
 (

ra
d/

s)

PI

AEM

ref

LQR

Fig. 7: PMSG speed tracking.

synthesized controller maintains an acceptable effi-
ciency even under disturbances and has better per-
formance than the classical PI-based control scheme
and more accurate tracking than a feedback LQR con-
troller. Simulation results in a PMSG-based wind en-
ergy conversion system illustrate the controller perfor-
mance.
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