
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 22 | NUMBER: 1 | 2024 | MARCH

Performance Evaluation Of Reconfigurable
Intelligent Surface Aided Multi-Hop Relaying
Schemes With Short Packet Communication

Pham Minh QUANG 1 , Nguyen Trong KIEN 1 , Tran Trung DUY 1 , Ngo Hoang
AN 2,3 , Nguyen Tien TUNG 2 , Anh-Vu LE 4

1Posts and Telecommunications Institute of Technology Ho Chi Minh City, Vietnam
2Faculty of Electronics Technology, Industrial University of Ho Chi Minh City (IUH),

Ho Chi Minh City 700000, Viet Nam
3Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam

4Communication and Signal Processing Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City, Vietnam

quangpm@ptit.edu.vn, ntkien@ptit.edu.vn, duytt@ptit.edu.vn, annh@huit.edu.vn,
nguyentientung@iuh.edu.vn, leanhvu@tdtu.edu.vn

DOI: 10.15598/aeee.v22i1.5583

Article history: Received Dec 06, 2023; Revised Feb 19, 2024; Accepted Mar 23, 2024; Published Mar 31, 2024.
This is an open access article under the BY-CC license.

Abstract. This paper proposes and studies perfor-
mance of reconfigurable intelligent surface (RIS)-
assisted multi-hop schemes employing short packet
communication (SPC). In the proposed schemes, a
source sends its data to a destination, and one RIS
is deployed to assist the data transmission at each
hop. For complexity reduction purposes, we propose
two RIS-assisted data transmission methods at each
hop. In the first one, the RIS is only used when the
quality of the direct link is not good. In the second one,
the direct link or the relay link via the RIS is selected
for the data transmission. We evaluate performance
of the two proposed schemes by deriving formulas of
end-to-end block error rate (BLER-e2e) over Rayleigh
fading channel. Finally, the derived BLER-e2e expres-
sions are validated by computer simulations.

Keywords

Intelligent reflecting surface, short packet com-
munication, multi-hop relaying, cooperative
communication.

1. Introduction

Relaying techniques [1–13] are often applied to wire-
less communication networks to improve network per-
formance under the impact of fading channels. In [1,2],
intermediate nodes within radio range of both source
and destination nodes (called relay nodes) are em-
ployed to assist in source-to-destination data transmis-
sion. In [3], multi-hop schemes using multiple relays are
studied because the destination is far from the source.
In [4], route selection algorithms are applied for multi-
hop multi-path wireless sensor networks, where sensor
nodes, whose transceiver hardware is imperfect, have
to harvest energy from radio signals for data transmis-
sion. Moreover, the published work [4] considers the
presence of active eavesdroppers, and therefore, sensor
nodes have to reduce their transmit power to protect
the source data. In [5], a multi-hop network using full-
duplex relaying techniques and operating in a near-field
path-loss environment is proposed and evaluated. Ad-
ditionally, the authors in [5] consider non-orthogonal
multiple access techniques and the issue of imperfect
interference cancellation. Published works [6–13] in-
troduce various practical applications of the relaying
techniques in wireless communication networks.

Recently, relaying networks that use reconfigurable
intelligent surfaces (RIS) have been studied. Unlike
the conventional relaying methods, in [14–18], the RIS,
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which consists of a lot of small reflectors, is deployed
to optimally reflect the source signals to the desired
destination. In particular, the RIS uses controllers
to appropriately adjust the phases of the radio waves
so that they can be reflected to the destination opti-
mally. In [19], the authors study secrecy performance
for a down-link relaying scenario using the RIS. As in
[19], the RIS-aided scenario obtains better performance
than the corresponding one using the conventional re-
lays. In [20], the authors analyze average secrecy ca-
pacity of secure transmission relaying models using the
RIS with discrete phase shift. The authors in [21] in-
vestigate secrecy performance of RIS-assisted vehicle-
to-vehicle and vehicle-to-infrastructure networks.

Short packet communication (SPC) has garnered a
lot of attention of researchers for its applications in
ultra-reliable low-latency communication networks. In
[22], the authors propose and optimize block error rate
(BLER) performance of dual-hop relaying schemes em-
ploying SPC. Published works [23, 24] study cluster-
based multi-hop relaying models utilizing SPC, and in-
corporating relay selection at each hop. Notably, the
transmitting nodes in these models are required to har-
vest wireless energy from power stations. In [25], the
authors assessed BLER performance of dual-hop un-
derlay cognitive radio networks with the assistance of
the RIS.

In this paper, we propose the RIS-aided multi-hop
scheme using SPC. In particular, the RIS is employed
to assist the data transmission at each hop on the
source-to-destination route. Although published works
[26, 27] also study multi-hop networks using hop-by-
hop cooperative transmission, [26, 27] do not consider
the SPC and RIS techniques. In contrast to [28–33],
this paper considers the multi-hop relaying networks,
while these published works consider RIS-aided dual-
hop networks. In [34], the authors evaluate outage
performance of the RIS-aided multi-hop networks, but
they] do not study the SPC technique.

Next, this paper briefly introduces motivation, new
points and main contributions:

• We propose two new RIS-aided hop-by-hop trans-
mission methods for the proposed scheme. In the
first one (named RIS-IC), Incremental Coopera-
tion strategy is applied at each hop, where the
RIS is only used if the direct link is not good. In
the second one (named RIS-AE), the RIS is always
employed at each hop. However, only the direct
link or the relay link via the RIS is selected for the
data transmission.

• Our proposed RIS-IC and RIS-AE methods reduce
implementation complexity, as compared to the
corresponding RIS-aided hop-by-hop transmission
one proposed in [8] (named RIS-Opt).

• We derive expressions of the end-to-end block er-
ror rate (BLER-e2e) for the RIS-IC and RIS-AE
over Rayleigh fading channels.

• All the derived BLER-e2e formulas will be vali-
dated by computer simulations.

• Impact of the important parameters such as the
number of hops, the number of reflectors at the
RIS, the threshold value in the RIS-IC scheme on
the performance of the proposed schemes is inves-
tigated.

The remaining contents of this paper is outlined as
follows: Section 2. presents system model of the RIS-
IC and RIS-AE schemes. Derivation of the BLER-e2e
performance over Rayleigh fading channel is performed
in Section 3. . Simulation and theoretical results are
presented in Section 4. , and Section 5. concludes
the paper.

2. System Model

In Fig. 1, the source node (T0) attempts to send the
data to the destination node (TN ) via a pre-established
N hop route, i.e., T0 → T1 → ...TN−1 → TN . The
RIS (R) with K reflectors is deployed to assist the
T0 → TN transmisison. We denote K elements of
the RIS by Rk, k = 1, 2, . . . ,K. Assume that each
node Tn (n = 0, 1, ..., N) is equipped with single an-
tenna, and therefore, the T0 → TN transmission is
realized via N time slots. Using SPC, T0 sends a δ-bit
packet to TN with a blocklength m(m > 100), and the
coding rate at each hop is given as r = δ/m [35].

Next, we denote hTn−1Tn , hTn−1Rk
and hRkTn as

channel coefficients of the Tn−1 → Tn, Tn−1 → Rk
and Rk → Tn links, respectively, where n = 1, ..., N .
Then, we denote the corresponding channel gains as
gTn−1Tn

= |hTn−1Tn
|2, gTn−1Rk

= |hTn−1Rk
|2 and

gRkTn = |hRkTn |2. Once the X → Y channel is
Rayleigh fading, gXY has the following distribution
functions:

fgXY (x) = λXY exp (−λXYx) ,

FgXY (x) = 1− exp (−λXYx) , (1)

where X ∈ {Tn−1,Rk}, Y ∈ {Tn,Rk}. fgXY (.) and
FgXY (.) denote probability density function (PDF) and
cumulative distribution function (CDF) of gXY, respec-
tively, and λXY = dβXY [36, 37] (β is a path-loss factor
and dXY is distance between X and Y).

For ease of presentation, we can denote the link
distances as: dTn−1Rk

= dTn−1R and dRkTn = dRTn

for all Rk. Hence, we have λTn−1Rk
= λTn−1R and

λRkTn
= λRTn

, for all Rk. Let Pn−1 and σ2
0 de-

note transmit power of Tn−1 and variance of Gaussian
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Fig. 1: System model of the proposed RISA-MHR-SPC model.

noises at all the receivers Tn, respectively. We also
denote ∆n−1 = PTn−1

/σ2
0 as transmit signal-to-noise

ratio (SNR).

Next, considering the hop in the RIS-IC scheme. If
Tn−1 directly the source packet to Tn, SNR of the
Tn−1 → Tn link is written as

ψDT
Tn−1Tn

=
PTn−1

gTn−1Tn

σ2
0

= ∆n−1gTn−1Tn
. (2)

Using (1), the CDF of the SNR ψDT
Tn−1Tn

can be ob-
tained as

FψDT
Tn−1Tn

(x) = Pr
(
ψDT

Tn−1Tn
< x

)
= FgTn−1Tn

(
x

∆n−1

)
= 1− exp

(
−
λTn−1Tn

∆n−1
x

)
. (3)

If ψDT
Tn−1Tn

is higher than a pre-designed threshold
(ψth), the direct link (Tn−1 → Tn) is used for the data
transmission. Otherwise, if ψDT

Tn−1Tn
6 ψth, the RIS

is employed, and the obtained maximal SNR of the
Tn−1 → R→ Tn link can be given as in [25, Eq. (3)]:

ψRIS
Tn−1Tn

=

PTn−1

(
K∑
k=1

|hTn−1Rk
||hRkTn

|
)2

σ2
0

= ∆n−1 (Zsum
n )

2
, (4)

where Zsum
n =

K∑
k=1

|hTn−1Rk
||hRkTn

| .Using [25, Eq.

(13)], the CDF FZsum
n

(x) can be expressed as

FZsum
n

(x) ≈ γ (αn + 1, x/ωn)

Γ (αn + 1)
, (5)

where Γ (.) and γ (.) are Gamma function and lower
incomplete Gamma function [38], respectively, and

αn =
(E {Zsum

n })2

Var {Zsum
n }

− 1, ωn =
Var {Zsum

n }
E {Zsum

n }
, (6)

where, E {Zsum
n } and Var {Zsum

n } are expected value
and variance of Zsum

n , respectively. As [15, Eq. (13)],
we have

E {Zsum
n } =

Kπ

4
√
λTn−1RλRTn

,

Var {Zsum
n } =

(
16− π2

)
K

16λTn−1RλRTn

. (7)

From (5), the CDF of the SNR ψRIS
Tn−1Tn

in (4) is
written as

FψRIS
Tn−1Tn

(x) = FZsum
n

(√
x

∆n−1

)
≈ 1

Γ (αn + 1)
γ

(
αn + 1,

1

ωn

√
x

∆n−1

)
. (8)

Remark 1: When the Tn−1 → Tn link is strong,
Tn−1 can sends the source bits directly to Tn without
utilizing the RIS. Therefore, implementing the RIS-IC
is simpler than that of the RIS-AE and the RIS-Opt.
However, in the RIS-IC, the threshold ψth needs to be
designed carefully. Indeed, if ψth is set to low values,
the direct link is used more frequently than the relay
link, and in this case, the RIS is not exploited effec-
tively. Otherwise, if ψth is set to high values, the RIS
is more frequently but the implementation complexity
is higher.

Now, we consider the RISA-AE scheme; at the nth
hop, the obtained SNR can be formulated as

ψAE
Tn−1Tn

= max
(
ψDT

Tn−1Tn
, ψRIS

Tn−1Tn

)
. (9)

where ψDT
Tn−1Tn

and ψRIS
Tn−1Tn

are given as in (2) and
(4), respectively. Using (3) and (8), we can obtain the
CDF of ψAE

Tn−1Tn
as

FψAE
Tn−1Tn

(x) = Pr
(
ψAE

Tn−1Tn
< x

)
=FψDT

Tn−1Tn
(x)FψRIS

Tn−1Tn
(x)

=

(
1− exp

(
−
λTn−1Tn

∆n−1
x

))
× 1

Γ (αn + 1)
γ

(
αn + 1,

1

ωn

√
x

∆n−1

)
. (10)

Remark 2: Equation (9) implies that the direct link
(Tn−1 → Tn) is chosen if ψDT

Tn−1Tn
> ψRIS

Tn−1Tn
. Oth-

erwise, the relay link is selected. This also means that
when the direct link is better than the relay link (e.g.,
the RIS is far Tn−1 and Tn or Tn−1 and Tn are close
each other), the direct link is used. Hence, the RIS-AE
achieves better performance, but the implementation
of the RIS-AE is more complex than that of the RIS-
IC.
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For performance comparison, this paper also intro-
duces the RIS-Opt scheme. In this scheme, the SNR
at the nth hop determined by an optimal phase shift
strategy, and it is provided similarly to [18, Eq. (3)],
as

ψOpt
Tn−1Tn

= ∆Tn−1

(
|hTn−1Tn |+

K∑
k=1

|hTn−1Rk
||hRkTn |

)2

.

(11)

Note that ψOpt
Tn−1Tn

> ψAE
Tn−1Tn

(∀n), which means
the RIS-Opt outperforms the RIS-AE. However, im-
plementing the RIS-Opt is most complex due to the
optimal phase shift strategy [18].

Next, we analyze BLER-e2e of the Z scheme, where
Z ∈ {RIS - IC,RIS - AE}. When the selective decode-
and-forward technique is applied, BLER-e2e of the Z
scheme can be expressed as in [35] as

BLERZ
e2e = BLERZ

1

+

N∑
n=2

[
BLERZ

n ×
n−1∏
u=1

(
1− BLERZ

u

)]
, (12)

where BLERZ
n is BLER at the nth hop in the Z scheme,(

1− BLERZ
u

)
denotes the successful decoding at the

u-th hop, and BLERZ
n×

n−1∏
u=1

(
1− BLERZ

u

)
implies that

the source packet is dropped at the nth hop.

3. Performance Analysis

In this section, we derive expressions of BLERZ
n, and

then substituting the derived BLERZ
n into (12) to ob-

tain BLERZ
e2e of the Z scheme.

At first, we considering the RIS-IC scheme; BLER
at nth hop in this scheme can be formulated as

BLERRIS - IC
n = BLERRIS - IC

n,DT

+ Pr
(
ψDT

Tn−1Tn
6 ψth

)
BLERRIS - IC

n,RIS . (13)

In (13), BLERRIS - IC
n,DT and BLERRIS - IC

n,RIS are BLERs
in the cases where the direct and relay links are used,
respectively. Also in (13), Pr

(
ψDT

Tn−1Tn
6 ψth

)
is prob-

ability that the RIS is used, and it is calculated as

Pr
(
ψDT

Tn−1Tn
6 ψth

)
= FψDT

Tn−1Tn
(ψth)

= 1− exp

(
−
λTn−1Tn

∆n−1
x

)
. (14)

For BLERRIS - IC
n,DT in (13), we can formulate it as (see

[35]):

BLERRIS - IC
n,DT ≈

∫ +∞

0

Q

(
C (x)− r√
V (x) /m

)
× fψDT

Tn−1Tn
|ψDT

Tn−1Tn
>ψth

(x) dx, (15)

where Q (.) is Gaussian Q-function [38], V (x) and
C (x) are given, respectively as (see [35]):

V (x) =

(
1− 1

(1 + x)
2

)
(log2 (e))

2
,

C (x) = log2 (1 + x) . (16)

In (15), fψDT
Tn−1Tn

|ψDT
Tn−1Tn

>ψth
(x) is the PDF of

ψDT
Tn−1Tn

conditioned on ψDT
Tn−1Tn

> ψth. To find
fψDT

Tn−1Tn
|ψDT

Tn−1Tn
>ψth

(x), we first find the conditioned

CDF FψDT
Tn−1Tn

|ψDT
Tn−1Tn

>ψth
(x):

FψDT
Tn−1Tn

|ψDT
Tn−1Tn

>ψth
(x)

= Pr
(
ψDT

Tn−1Tn
< x,ψDT

Tn−1Tn
> ψth

)

=



0, x 6 ψth

exp

(
−
λTn−1Tnψth

∆n−1

)
− exp

(
−
λTn−1Tn

x

∆n−1

)
, x > ψth

(17)

From (17), we obtain the conditioned PDF
fψDT

Tn−1Tn
|ψDT

Tn−1Tn
>ψth

(x) as

fψTn−1Tn |ψTn−1Tn>ψth (x)

=


0, x 6 ψth

λTn−1Tnx

∆n−1
exp

(
−
λTn−1Tnx

∆n−1

)
, x > ψth

(18)

Substituting (18) into (15), we have

BLERRIS - IC
n,DT ≈

∫ +∞

ψth

Q

(
C (x)− r√
V (x) /m

)

×
λTn−1Tnx

∆n−1
exp

(
−
λTn−1Tnx

∆n−1

)
dx. (19)

Similarly, BLERRIS - IC
n,RIS in (13) can be expressed as

BLERRIS - IC
n,RIS ≈

∫ +∞

0

Q

(
C (x)− r√
V (x) /m

)
fψRIS

Tn−1Tn
(x) dx.

(20)

Moreover, BLERRIS - IC
n,RIS in (20) can be rewritten un-

der the following form (see [35, Eq. (11)]):

BLERRIS - IC
n,RIS ≈ ϑ

√
m

∫ ρH

ρL

FψRIS
Tn−1Tn

(x)dx, (21)
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Fig. 2: BLER-e2e as a function of ∆(dB) when N = 2 and
K = 3.

where

ϑ =
1

2π
√

22r − 1
, θ = 2r − 1,

ρH = θ +
1

2ϑ
√
m
, ρL = θ − 1

2ϑ
√
m
. (22)

Substituting (8) into (21), after some careful manip-
ulation, we obtain

BLERRIS - IC
n,RIS ≈ ϑ

√
m

Γ (αn + 1)

×
∫ ρH

ρL

γ

(
αn + 1,

1

ωn

√
x

∆n−1

)
dx

≈ ϑ
√
m

Γ (αn + 1)
(In,H − In,L) , (23)

where

In,H = ρHγ

(
1 + αn,

√
ρH

ωn
√

∆n−1

)

− 1

(ωn)
2

∆n−1
γ

(
3 + αn,

√
ρH

ωn
√

∆n−1

)
,

In,L = ρLγ

(
1 + αn,

√
ρL

ωn
√

∆n−1

)

− 1

(ωn)
2

∆n−1
γ

(
3 + αn,

√
ρL

ωn
√

∆n−1

)
, (24)

Fig. 3: BLER-e2e as a function of ψth when N = 4.

Substituting (14), (19) and (23) into (13), we can
obtain BLERRIS - IC

n as follows:

BLERRIS - IC
n ≈

∫ +∞

ψth

Q

(
C (x)− r√
V (x) /m

)

×
λTn−1Tnx

∆n−1
exp

(
−
λTn−1Tnx

∆n−1

)
dx

+

(
1− exp

(
−
λTn−1Tn

∆n−1
x

))
× ϑ

√
m

Γ (αn + 1)
(In,H − In,L) . (25)

Similar to (21), we can calculate BLERRIS - AE
n as

BLERRIS - AE
n ≈ ϑ

√
m

∫ ρH

ρL

FψRIS
Tn−1Tn

(x)dx. (26)

Substituting (10) into (26), we have

BLERRIS - AE
n ≈ ϑ

√
m

Γ (αn + 1)

×
∫ ρH

ρL

[(
1− exp

(
−
λTn−1Tn

∆n−1
x

))
× γ

(
αn + 1,

1

ωn

√
x

∆n−1

)]
dx. (27)

Finally, substituting (25) and (27) into (12), we ob-
tain expressions of BLERRIS - IC

e2e and BLERRIS - AE
e2e , re-

spectively.

4. Results

This section provides both simulation results (Monte
Carlo simulation) and theoretical results of the BLER-
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Fig. 4: BLER-e2e as a function of ψth when K = 4 and ∆ =
5dB.

e2e performance of the RIS-IC and RIS-AE schemes.
For a fair comparison, the total transmit power is fixed

by Ptot, i.e.,
N−1∑
n=0

PTn = Ptot. We also assume that all

the transmitters have the same transmit power, and we
hence have PTn

= Ptot/N . In all simulations, we place
Tn at position (n/N, 0) and the RIS at (0.5, 0.75). We
also fix the values of the parameters as follows: β = 3,
σ2
0 = 1, δ = 256 and m = 128.

Fig. 2 depicts the BLER-e2e performance of the
RIS-IC and RIS-AE schemes as a function of trans-
mit SNR

(
∆ = Ptot/σ

2
0

)
in dB with different values

of the threshold ψth, i.e., ψth ∈ {1, 5, 20}. The re-
maining parameters are set to N = 2 and K = 3.
As observed, BLER-e2e of the RIS-AE is consistently
lower than that of the RIS-IC for all values of ψth.
It is evident that the threshold ψth significantly im-
pacts the performance of the RIS-IC. Specifically, when
ψth = 1, BLER-e2e of the RIS-IC is highest, whereas
with ψth = 5, it reaches to the lowest value. As high-
lighted in Remark 1, a very low value of ψth implies
that the RIS-IC predominantly utilizes the direct link
for data transmission at each hop. Conversely, with a
very high value of ψth, the relay link is predominantly
used, resulting in the omission of the role of the direct
link. This explains why BLER-e2e of the RIS-IC with
ψth = 20 is higher than that with ψth = 5. Finally, Fig.
2 illustrates that the simulation (Sim) and theoretical
(Theory) results are in a good agreement, confirming
the correctness of our derivations in the previous sec-
tions.

Fig. 3 illustrates the BLER-e2e performance of the
RIS-IC as a function of ψth withN = 4 and varying val-
ues of ∆ and K. As expected, BLER-e2e of the RIS-IC

Fig. 5: BLER-e2e as a function of ∆(dB) when K = 2, N = 6
and ψth = 4.

is lower with higher values of ∆ and K. Furthermore,
Fig. 3 reveals presence of an optimal value for ψth that
minimizes BLER-e2e of the RIS-IC. For instance, in
Fig. 3, with ∆ = 0dB, K = 2 and ∆ = 2.5dB, K = 3,
the optimal value of ψth is 3. Similarly, with ∆ = 5dB,
K = 5, the optimal value of ψth is 4. This highlights
the need for careful design considerations when select-
ing ψth to optimize the performance of the RIS-IC.

Fig. 4 illustrates BLER-e2e of the RIS-IC and RIS-
AE schemes as a function of ψth with K = 4 and
∆ = 5dB. In this figure, the number of hops (N) is
set to 2 and 5. Similar to Fig. 3, it is evident that an
optimal value of ψth exists so that the performance of
the RIS-IC is best. For instance, the optimal value of
ψth is 4 in both cases of N = 2 and N = 5. However, it
is worth noting that the RIS-AE consistently outper-
forms the RIS-IC for all values of ψth. To find the opti-
mal values of ψth, the derived expressions of BLER can
be used efficiently. Additionally, we observe that the
number of hops significantly influences the BLER-e2e
performance. In the RIS-AE scheme, the BLER-e2e
value is lower with M = 2, and in the RIS-IC scheme,
the performance is superior with N = 2 and ψth > 4.

Fig. 5 compares the performacne of the RIS-IC, RIS-
AE and RIS-Opt schemes with K = 2, N = 6 and
ψth = 4. As observed, the RIS-Opt achieves the best
performance, while the RIS-AE again outperforms the
RIS-IC. As mentioned earlier, implementing the RIS-
Opt is the most complex because it requires all channel
state information of the links for realizing the optimal
phase shift strategy. Additionally, it is worth noting
that the performance gap between the RIS-AE and the
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Fig. 6: BLER-e2e as a function of N when ψth = 3.5 and ∆ =
5(dB).

RIS-IC is small because ψth is designed with an appro-
priate value, i.e., ψth = 4.

Fig. 6 presents the performance of the RIS-IC and
RIS-AE schemes as a function of the number of hops
(N) when ψth = 3.5 and ∆ = 5(dB). Fig. 6 demon-
strates that BLER-e2e of the RIS-IC and RIS-AE
schemes increases with the increasing of N . It is due
to the fact that when the number of hops increases,
the transmit power of each node decreases due to the
fixed total transmit power, i.e., PTn = Ptot/N for all
n = 0, 1, ..., N − 1. Again, we can see that the perfor-
mance of the proposed schemes is better with higher
number of reflectors at the RIS.

5. Conclusion

In this paper, we proposed two RIS-aided multi-hop re-
laying schemes using SPC. Implementing the proposed
RIS-IC and RIS-AE schemes are much simpler than
the RIS-Opt one. We evaluated the BLER-e2e per-
formance of the proposed schemes through both sim-
ulations and analysis. The results indicated that the
RIS-AE outperforms the RIS-IC although the imple-
mentation of the RIS-IC is simpler. In the RIS-IC, the
threshold needs to be optimized to achieve the best per-
formance. Furthermore, the BLER-e2e performance of
the proposed schemes can be enhanced by increasing
the transmit power and the number of reflectors at the
RIS.
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