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Abstract. The paper presents new conditions suitable in 
design of a virtual actuator for a class of continuous-time 
nonlinear systems represented by Takagi-Sugeno models, 
and measurable premise variables. Simulation results 
illustrate the design procedure and demonstrate the basic 
performances of the proposed control design method. 
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1. Introduction 

All technological systems are subject to faults, due to 
both component malfunctions and unforeseen external 
influences. The complexity of control systems requires 
fault tolerance schemes to provide control of the faulty 
system. Fault tolerant systems (FTS) are that the fruitful 
applications with potential significance for domains in 
which control of systems must proceed while the system 
is operative and testing opportunities are limited by 
operational conditions. The real problem is usually to fix 
the system with faults so that it can continue its mission 
for some time with some limitations of functionality. 

 The main task to be tackled in achieving fault 
tolerance is design of controllers with such suitable 
reconfigurable structure, which guarantees the stability, 
the satisfactory performance, and the plant operation 
economy in nominal operational conditions. To achieve 
the fault tolerance, used methods rely on employing on- 
line fault diagnosis schemes, which activate an alternative 
control - reconfigurable control structure - that is 
supposed to handle a fault. Among these structures can be 
quoted control systems with adaptation to faults, the 
virtual-based control structures, as well as the output 
control reconfiguration algorithms  [1]. 

 In order to solve the complexity problems, the 

control reconfiguration has to satisfy the requirement that 
the control reconfiguration has to be performed on line 
after the fault has been detected  [2],  [3]. This requires 
simple and fast algorithms that work reliably without 
manual interventions and without the controller 
parameters tuning in a fault case. It is sufficient to store 
a parametric model of the system (including all faults) 
and a reconfiguration algorithm. The new control 
structure is generated on demand after the fault has been 
detected. Bibliographical reviews can be found in  [4],  [5], 
new developments in fault-tolerant control methods are 
presented e.g. in  [2],  [6],  [7]. 

 For nonlinear system design, various control 
schemes were introduced including exact feedback 
linearization and adaptive control. The technique of exact 
feedback linearization needs perfect knowledge of the 
nonlinear system and uses that knowledge to cancel the 
nonlinearities of the system. Since perfect knowledge of 
the system is almost impossible, the technique of exact 
feedback linearization cannot be generally used for 
nonlinear system control design. Also, adaptive control 
schemes, which were introduced to deal with nonlinear 
systems, exploit complicated parameter update laws and 
so the adaptive control algorithms posse hard limitations. 

 Since a generic controller design method for all 
types of nonlinear systems has not been developed yet, an 
alternative to design a controller for nonlinear systems is 
e.g. fuzzy approach, which benefits from the advantages 
of the approximation techniques approximating nonlinear 
system model equations. Using the Takagi-Sugeno (TS) 
fuzzy model  [8] the nonlinear system is represented as a 
collection of fuzzy rules, where each rule utilizes the 
local dynamics by a linear system model. Since TS fuzzy 
models can well approximate a large class of nonlinear 
systems, and the TS model based approach can apprehend 
the nonlinear behavior of a system while keeping the 
simplicity of the linear models, by employing the TS 
fuzzy model, a control design methodology exploits fully 
advantage of the modern control theory, especially in the 
state space optimal and robust control. 

 The main idea of the TS model-based controller 
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design is to derive control rules so as to compensate each 
rule of a fuzzy system, determining the local feedback 
gains  [9]. It is known that the separate stabilization of 
these local models does not ensure the stability of the 
overall fuzzy model, and global design conditions have to 
be used to guarantee the global stability and control 
performance. Therefore, a range of stability conditions 
have been developed for TS fuzzy systems [10], most of 
them relying on the feasibility of an associated system of 
linear matrix inequalities (LMI)  [11]. Therefore, the state 
control based on fuzzy TS systems model gives control 
structures, which can be designed using technique also 
based on equivalent LMIs. The idea behind this type of 
design is that the TS model based fuzzy control provides 
a user-friendly formalism for representing, implementing 
and achieving high-performance control structures  [12]. 

 This paper is concerned with the problem of the 
fuzzy virtual actuator design. Focusing on procedures for 
nonlinear dynamic system control, numerical example 
and system simulation are presented in advance. 

2. On Takagi-Sugeno Fuzzy Models 

The systems under consideration are one class of multi-
input and multi-output nonlinear (MIMO) dynamic 
systems, represented in the state-space form as 

 , (1) )())((=)( tButqatq 

 , (2) )(=)( tCqty

where , , , are vectors of 

the state, input, and output variables, respectively, and 

, and  are real finite values matrices. 

nRtq )(

rn C

rRtu )(

nmR 

mRty )(

RB

 It is assumed that  is a vector function, is 

bounded in associated sectors, i.e. in the fuzzy regions 
where it is assumed the system will operate within, and 
takes the value . It is considered that the number 

of the nonlinear terms in the nonlinear part of the model 
 is , and that there exists a set of nonlinear 

sector functions of these properties 

))(( tqa

0=(0)a

))(( tqa p

 , (3) 











 
))((=))((

))((1=))((

,1,2,=,,1,2,=)),((

2=
1

twtw

twtw

plkjtw

jljlj

lj

k

j
l

lj





 

where k is the number of sector functions, and 

  (4) 
1 2( ) = ( ) ( ) ( )qt t t     t 

is the vector of premise variables. It is supposed in the 
next that premise variables are measurable, and a premise 
variable can represent the state variable. 

 Using a TS model, the conclusion part of a single 
rule consists no longer of a fuzzy set, but determines a 

function with state variables as arguments, and the 
corresponding function is a local function for the fuzzy 
region that is described by the premise part of the rule. 
Thus, using linear functions, a system state is described 
locally (in fuzzy regions) by linear models, and at the 
boundaries between regions an interpolation is used 
between the corresponding local models. 

 Thus, the normalized aggregated function set 
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Therefore, the approximation of (1) leads to (5), (6), 

where  is the Jacobian matrix of  with 

respect to , and  is the center of the i-th fuzzy 

region described by the set of sector functions (3). 
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 Assumption 1: The matrices B, C are the same for 
all local models. 

 Assumption 2: The pair  is locally 

controllable and (B, C) is of full column (row) 
rank, where 
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Now the TS fuzzy model for (1), (2) takes form 

 , (9) 
=1

( ) = ( ( ))( ( ) ( ))
s

i i
i

q t h t A q t Bu t 

 , (10) )(=)( tCqty

and can be interpreted as a combination of  linear sub-
models through the set of normalized membership 
functions  to approximate the 

nonlinear system. 

s
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3. Stabilizing Fuzzy Controller 

3.1. Standard Fuzzy Control Design 

Considering (9), i.e. 
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and using the same set of membership function, the 
nonlinear fuzzy state controller is defined as   
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 Substituting (12) into (11) results in 

 . (13) 
=1 =1

( ) = ( ( ))( ( ) ( ( )) ( ))
s s

i i j j
i j

q t h t A q t h t BK q t  

Since  it yields },{1,1=))((
1=

sithi
s

i
 

 . (14) 
=1 =1

( )= ( ( )) ( ( ))( ) ( )
s s

i j i j
i j

q t h t h t A BK q t  

 The equilibrium of the fuzzy system (9), (10), 
controlled by the fuzzy controller (12) is globally 
asymptotically stable  [2] if there exists positive definite 

matrix  and matrices  such that nnRX  nr
j RY 
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 The set of the control law gain matrices is given as 

 . (17) sjXYK jj ,1,2,=,= 1 

4. Design of Fuzzy Based Nonlinear 
Virtual Actuator 

Problem of the interest is to design an asymptotically 
stable fuzzy virtual actuator using Takagi – Sugeno fuzzy 
model of the nonlinear system (11). 

 An actuator fault is modeled by changing the input 
matrix B towards Bf. Columns of Bf that correspond to 
faulty actuators are scaled in case of actuator degradation, 
or set to zero in the case of actuator failure. The faulty 
dynamic system is now given by the set of equations 
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where , , , are vectors 

of the state, input, and output variables, respectively, and 

 are matrix parameters 

describing the faulty system. The controller is a nonlinear 

fuzzy state feedback controller in the form (12). 
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 The stabilization requires the reconfigured control 
loop to be stable while the signals of the controller are 
not affected by the fault. Since the idea of the 
reconfiguration is to make the faulty plant behaviour like 
the nominal plant ones, the state of the model of the 
nominal plant can be used as a reference. Thus, the fuzzy 
virtual actuator is given as 
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 The structure of the reconfigured loop with a 
virtual actuator is in Fig. 1, where for simplicity 
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Fig. 1: Block diagram of the virtual actuator. 

 Theorem: The equilibrium of the system (11) with 
fuzzy virtual actuator is globally asymptotically stable if 
the pair (a(q(t)), Bf) be robust stabilizable on the 
prescribed area of the premise variables and there exist 

positive definite symmetric matrix   

and matrices  j=1, 2,…s such that 
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 The set of the control law gain matrices is given as 
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 . (25) sjXZM jj ,1,2,=,= 1 

 Proof: Introducing the error between the state 
vector of the nominal and faulty system in the form 

 )()(=)( tqtqte f , (26) 

then using TS fuzzy model (11) and (18), and taking the 
time derivative of e(t) it can be directly obtained 
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 It is evident from (28) that the separation principle 
can be used and to design separately the fuzzy controller 
and the fuzzy virtual actuator. 

 Since autonomous error dynamics of the closed 
loop system with fuzzy virtual actuator is given by 
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defining the Lyapunov function of the form 
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Thus, (31) implies that (29) is asymptotically stable if 
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 Since P is a regular matrix, then pre-multiplying 
left-hand side and right-hand side of (33) by P-1 gives 
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respectively. Then, with the notations 
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(35) implies (24). This concludes the proof. 

5. Illustrative Example 

The nonlinear dynamics of the system (1), (2) is 
represented by the six order model with the parameters 
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where the matrices B, C are the same for all local models. 

 The interpretation of the nonlinear system in a TS 
fuzzy system gives 
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 Evidently, vector of the premise variables can be 
chosen as follows 
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implies the next set of normalized membership functions 
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Fig. 2: Time response of p(t). 
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Fig. 3: Response of the fault-free system with fuzzy state controller. 

5.1. Fuzzy Control Design 

Thus, solving (15), (16) with respect to the LMI matrix 
variables X and , using Self-Dual-Minimi-

zation (SeDuMi) package for Matlab, then according to 
(17) the matrices  were obtained as 
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 Figure 3 gives the simulation result of the fuzzy 
control for the fault-free systems, and to show the 
effectiveness of the fuzzy state control application for the 
nonlinear systems, where external signal  was from 

prescribed sector (see Fig. 2). 

)(tp

5.2. The Failure of the Actuator 

As can see in Fig. 4, if the actuator failure occurs, the 
nominal fuzzy controller is not be able to stabilize the 

system. To stabilize the system, the fuzzy virtual actuator 
has to be incorporated into the control. 
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Fig. 4: Response of the system with the first actuator fault (t f  =26 s). 
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Fig. 5: Response of the system with the first actuator fault (tf =26 s) 

and fuzzy virtual actuator action starting at tva = 30 s. 

5.3. Fuzzy Virtual Actuator Design 

If the first actuator fault occurs, the matrix B is changed 
into matrix Bf as follow 
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 Thus, solving (23), (24) with respect to the LMI 
matrix variables X and ,  using Self-Dual-

Minimization (SeDuMi) package for Matlab the next 
matrix parameter  were obtained 
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and was applied in the fuzzy virtual actuator design. 
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 Simulation results (Fig. 5.) show on the 
effectiveness of the fuzzy virtual actuator application for 
faulty nonlinear systems. 

 The presented results show that the nonlinear 
fuzzy controlled system with the failure of an actuator 
can be stabilized using the fuzzy virtual actuator. 

6. Conclusion 

The paper presents new conditions suitable in design of a 
fuzzy virtual actuator for a class of continuous-time 
nonlinear systems represented by Takagi-Sugeno models, 
and measurable premise variables. Simulation results 
show on the effectiveness the fuzzy state controller 
application for the nonlinear systems. If after the actuator 
failure the fuzzy controller is not able to stabilize the 
system, the faulty system can be stabilized by 
incorporating the fuzzy virtual actuator into the control 
structure. The presented results show that such instable 
nonlinear system with an actuator failure can be 
stabilized using the fuzzy controller and fuzzy virtual 
actuator. 
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