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Abstract. This article presents a new voltage-mode
first order allpass filter (APF) employing voltage dif-
ferencing transconductance amplifier (VDTA). The ad-
vantages of the circuit are that: the circuit description
is very compact, consists of merely a VDTA and a ca-
pacitor: the phase shift can be electronically adjusted by
current bias: it provides the lower THD of the output
signal. Without any component matching conditions,
the proposed circuit is very appropriate to further de-
velop into an integrated circuit. Moreover, the pro-
posed APF can provide the output current with high
output impedance without modification of the circuit
topology. The PSpice simulation results are depicted.
The given results agree well with the theoretical anti-
cipation. The maximum power consumption is 400µW
at ±1.25V power supplies.
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1. Introduction

A phase shifter or first order allpass filter (APF) is
widely employed in analog signal processing system
such as, oscillators, high-Q band-pass filters and phase
shifters [1], [2], [3], [4], [5], [6]. The literature sur-
veys display that the first-order all-pass filter circuit
using different high-performance active building blocks
such as, current conveyors (CCIIs) [7], [8], [9], [10],

[11], [12], OTAs [13], current controlled current con-
veyors (CCCIIs) [14], [15], [16], [17], differential volt-
age current conveyor (DVCC) [18], differential differ-
ence current conveyors (DDCCs) [19], [20], current dif-
ferencing buffered amplifier (CDBA) [4], [21] and op-
erational transresistance amplifiers (OTRAs) [22], [23],
[24], voltage differencing-differential input buffered am-
plifier (VD-DIBA) [25], voltage differencing inverting
buffered amplifier (VDIBA) [26], have been reported.
However, these reported circuits suffer from one or
more of the following weaknesses:

• use more one active element [9], [13],

• requirement of an external resistor [4], [7], [13],
[18], [19], [20], [21], [22], [23], [24],

• absence of electronic adjustability [4], [7], [8], [9],
[10], [11], [12], [18], [19], [20],

• absence of the output current with high output
impedance in the same circuit topology [4], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26].

In 2011, the voltage differencing transconductance
amplifier is presented [27]. It consists of 2 ports input
voltage, 2 port output current and 2 external current
bias. The voltage differencing of V n with V n is trans-
ferred to current at the terminal z by first transcon-
ductance gain and the voltage at z port is transferred
to current at the seems to be a versatile component in
the realisation of a class of analog signal processing cir-
cuits. The fact is that the device can operate in both
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current and voltage-modes, provides flexibility and en-
ables a variety of circuit designs. In addition, output
current of VDTA can be electronically adjusted. The
aim of this paper is to propose a voltage-mode first or-
der allpass filter, emphasizing on the use of the VDTA.
The features of the proposed circuit are that: the phase
shift can be tuned by current bias: the circuit descrip-
tion is very simple, it uses 1 VDTA and a capacitor
as passive elements, which is suitable for fabricating in
monolithic chip or off-the-shelf implementation: phase
shift can be independently adjusted. The performances
of proposed circuit are illustrated by PSpice simula-
tions, they show good agreement as mentioned.

2. Theory and Principle

2.1. Basic Concept of VDTA

Since the proposed APF is based on VDTA, it is real-
ized by CMOS technology, a brief review of VDTA is
given in this Section. The characteristics of the ideal
VDTA are presented by the following hybrid matrix: Iz

Ix+
Ix−

 =

 gm1 −gm1 0
0 0 gm2

0 0 −gm2

 Vp
Vn
Vz

 , (1)

gm1 and gm2 are the transconductances of the VDTA,
I b1 and I b2 are currents bias employed to adjusted gm1

and gm2, respectively. They can be found to be:

gm1 =
√
Ib1µiCox(W/L), (2)

and
gm2 =

√
Ib2µiCox(W/L), (3)

where µi is the mobility of the carrier for NMOS
and PMOS transistors, C ox is the gate-oxide capa-
citance/unit area, W and L are the effective channel
width and length, respectively. The symbol of VDTA is
shown in Fig. 1, where V p and V n are input terminals
and z, x+ and x- are output terminals.

2.2. Proposed Voltage-Mode
First-Order All-Pass Filter

The proposed voltage-mode first-order APF is illus-
trated in Fig. 2. The proposed circuit consists of
only one VDTA and a capacitor. Not only the out-
put voltage is achieved, the output current with high
output impedance is also achieved which is well-known
as transconductance-mode. Considering the circuit in
Fig. 2, the current of z terminal can be found to be:

0 = Ic + Iz + Ix−. (4)

Fig. 1: Symbol of VDTA.

From the properties of VDTA, Eq. (4) can be rewrit-
ten as:

0 = sC(Vin − V0)− gm1Vin − V0gm2. (5)

From Eq. (5), the voltage and transconductanc
transfer functions can be express to be:

V0
Vin

=
sC − gm1

sC + gm2
, (6)

and
I0
Vin

= gm2

(
sC − gm1

sC + gm2

)
. (7)

For easy consideration, if gm2=gm1=gm, the transfer
functions can be rewritten to:

V0
Vin

=
sC − gm
sC + gm

, (8)

and
I0
Vin

= gm

(
sC − gm
sC + gm

)
. (9)

From Eq. (8), the pole frequency, voltage gain and
phase response of the proposed circuit are:

ωp =
gm
C
, (10)

∣∣∣∣ V0Vin
∣∣∣∣ = 1, (11)

and

φ(ωp) = π − 2tan−1

(
ωpC

gm

)
. (12)

For transconductance-mode, the pole frequency and
phase response are same to the voltage-mode APF. But
the transconductance-gain is written as:∣∣∣∣ I0Vin

∣∣∣∣ = gm. (13)
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From properties of VDTA as shown in Eq. (2) and
Eq. (3), the pole frequency and phase response for both
mode can be modified to be:

ωp =
C√

IBµiCox(W/L)
, (14)

and

φ(ωp) = π − 2tan−1

[
ωpC√

IBµiCox(W/L)

]
. (15)

It can be seen that the circuit gives a phase shift from
180◦ –0◦. Moreover, the angle pole frequency can be
electronically controlled by IB . For transconductance-
mode, the transconductance gain is rewritten as:∣∣∣∣ I0Vin

∣∣∣∣ =√IBµiCox(W/L). (16)

The ωp sensitivities of the filter can be written to:

S
ωp

C = −1, S
ωp

IB
= 1.5. (17)

Fig. 2: Proposed voltage-mode first-order APF.

2.3. Non Ideal Case

In practice, the influences of voltage and current track-
ing errors and also the parasitic terminal impedances
of VDTA will affect the filter performance. In this Sec-
tion, these parameters will be taken into account. For
non-ideal the VDTA can be respectively characterized
with the following equations:[

Iz
Ix+
Ix−

]
=

[
αpgm1 αNgm1 0

0 0 βgm2

0 0 −βgm2

][
Vp
VN
VZ

]
, (18)

where αP and αN are the transconductance error gains
from P and N ports to z port. β is the transconduc-
tance error gain from z port to x port. The influ-
ences of parasitic impedances are resistive and capaci-
tive parts affecting the P, N, Z and X ports of VDTA.

Let us denote them RP , CP , RN , CN , Rz, CZ , and
RX , CX , respectively. Considering into these effects,
the voltage and transconductane transfer functions will
be modified to the more general forms:

V0
Vin

=
sC − αNgm1

s(C + C∗) +G∗ + βgm2
, (19)

and

I0
Vin

= βgm2

(
sC − αNgm1

s(C + C∗) +G∗ + βgm2

)
, (20)

where C∗= CN+ CZ+ CX and G∗= GN+ GZ+ GX .
In this case, the pole frequency, voltage gain and phase
response are modified to:

ωp =
G∗ + αNgm
C + C∗ , (21)

∣∣∣∣ V0Vin
∣∣∣∣ =

√
(ωpC)2 − (αNgm1)2√

[ωp(C + C∗)]
2
+ (G∗ + βgm2)2

, (22)

and

φ(ωp) = π − tan−1

(
ωpC

αNgm1

)
− tan−1

[
ωp(C + C∗)

G∗ + βgm2

]
. (23)

The transconductance-gain from Eq. (20) is written
as:∣∣∣∣ I0Vin

∣∣∣∣ = βgm2

√
(ωpC)2 − (αNgm1)2√

[ωp(C + C∗)]
2
+ (G∗ + βgm2)2

. (24)

It should be mentioned that the non-ideal param-
eters of the VDTA affect the pole frequency, voltage
gain and phase response.

3. Simulation Results

The performances of the proposed voltage-mode first
order allpass filter have been tested by PSpice sim-
ulation. This work employed a VDTA realized by a
CMOS technology. The NMOS and PMOS transistors
employed in the proposed circuit as shown in Fig. 2,
were simulated by respectively using the parameters of
the 0.25 µm TSMC CMOS technology (level 7) with
±1.25 V supply voltages. Fig. 3 depicts the schematic
description of VDTA used in the simulations. The as-
pect ratios of PMOS and NMOS transistor are W/L
= 8 µm/0.25 µm and W/L = 5 µm/0.25 µm, respec-
tively. C = 10 pF, IB = 80 µA. Simulated gain and
phase responses of the APF are given in Fig. 4. It
can be found that the simulated gain is slightly de-
viated from ideal responses due to the error terms as

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 42



THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 12 | NUMBER: 1 | 2014 | MARCH

expressed in Eq. (22). Phase response for different IB
is shown in Fig. 5. This result confirms that the angle
natural frequency can be electronically controlled by
setting IB as shown in Eq. (15). The time-domain re-
sponse of the proposed APF is shown in Fig. 6, where
a sine wave of 150 mV/5 MHz was applied as the input
to the filter. Fig. 7 shows the total harmonic distor-
tion (THD) variation with respect to amplitude of the
applied sinusoidal input voltage at the pole frequency
of the all-pass filter. The tuning of pole frequency by
IB is confirmed by the result in Fig. 8.

Fig. 3: Internal construction of VDTA.

Fig. 4: Output phase and gain response.

Fig. 5: Output phase and gain responses.

4. Conclusion

An electronically tunable voltage-mode first-order all-
pass filter has been introduced via this paper. The

Fig. 6: Time domain response of the circuit in Fig. 2.

Fig. 7: THD variations versus amplitudes of the applied sinu-
soidal input voltages at f 0= 6.75 MHz.

Fig. 8: Pole frequency vs IB .

proposed configuration is very simple and can be elec-
tronically controlled. It consists of single VDTA and
single capacitor. So it is easy to fabricate in IC form
to use in battery-powered or portable electronic equip-
ments such as wireless communication devices. In addi-
tion, the output current with high output impdenace is
achieved. The PSpice simulation results were depicted,
and agree well with the theoretical anticipation.
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