
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 11 | NUMBER: 6 | 2013 | DECEMBER

The Data Extraction Using Distributed Crawler

Inside the Multi-Agent System

Karel TOMALA1, Jan PLUCAR 2, Patrik DUBEC 2, Lukas RAPANT 3, Miroslav VOZNAK 1

1Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB–Technical
University of Ostrava, 17. listopadu, 708 33 Ostrava-Poruba, Czech Republic

2Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB–Technical
University of Ostrava, 17. listopadu, 708 33 Ostrava-Poruba, Czech Republic

3Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science,
VSB–Technical University of Ostrava, 17. listopadu, 708 33 Ostrava-Poruba, Czech Republic

karel.tomala@vsb.cz, jan.plucar@vsb.cz, patrik.dubec@vsb.cz, lukas.rapant@vsb.cz, miroslav.voznak@vsb.cz

Abstract. The paper discusses the use of web crawler
technology. We created an application based on stan-
dard web crawler. Our application is determined for
data extraction. Primarily, the application was de-
signed to extract data using keywords from a social
network Twitter. First, we created a standard crawler,
which went through a predefined list of URLs and grad-
ually download page content of each of the URLs. Page
content was then parsed and important text and meta-
data were stored in a database. Recently, the appli-
cation was modified in to the form of the multi-agent
system. The system was developed in the C# language,
which is used to create web applications and sites etc.
Obtained data was evaluated graphically. The system
was created within Indect project at the VSB-Technical
University of Ostrava.

Keywords

Class diagram, multi-agent system, Twitter,
web crawler.

1. Introduction

We have faced the problem of data mining from social
networks, such as Twitter. Data mining is the method-
ology of obtaining non trivial hidden and potentially
useful information from data. It is used in the com-
mercial sector and scientific research, but also in other
areas. In our case, we have used the data mining meth-
ods to extract keywords from content downloaded by
web crawlers [1]. Social network has great potential
for obtaining data and information about relationships
between groups of people [2].

1.1. Web Crawler

A Web crawler (also known as a web spider or web
robot) is a computer program or automated script
which browses the World Wide Web in a methodical,
automated manner or in an orderly fashion. This pro-
cess is called Web crawling or spidering [3].

Users are browsing websites through a series of links
from one page to another. This activity can be simu-
lated and performed by robots. Browsing the code of
web pages, gathering the information found in the code
and search links to other websites is the most common
task of robots. In principle, this type of robots are
divided into two groups according to the size of the
search area:

• Robots which browse websites on the pre-specified
domain or a finite set of several domains.

• Robots browsing across large environment of
WWW.

To start browsing website the robot needs the ini-
tial URL or a list of URLs (seed). Then it starts
to browse the web pages from the given URLs and
searches links leading to other sites (crawl frontier),
which will crawler need to visit. This procedure is then
repeated recursively. It also shows that the robot can
visit only those web pages that can be accessed by fol-
lowing links leading from the initial web page. Some
robots can simultaneously visit multiple web pages and
browse them in parallel. Other robots move to the next
web page after processing the current web page [4]. Ar-
chitecture of crawler is shown in Fig. 1.

c© 2013 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 455

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 11 | NUMBER: 6 | 2013 | DECEMBER

Fig. 1: Architecture of crawler.

1.2. Multi-Agent System

Multi-agent system (MAS) is a simulated environment
with the network character, in which there is interac-
tion between certain types of actors (agents) to each
other and / or with the environment in which they are
located (Fig. 2). These agents collectively solve prob-
lems that go beyond the capabilities and skills of each
of them [4].

Fig. 2: Multi-agent system.

2. Used Technology and

Methodology

First, we have created a standard crawler, which
browsed through a predefined list of URLs and gradu-
ally download page content of each of the URLs. Page
content is then parsed and important text and meta-
data are stored in a database.

Crawler, demonstrated in Fig. 1 was working prop-
erly, but in terms of the volume of downloaded data
was not sufficient. It was necessary to run the crawler
on multiple machines and somehow coordinate these
instances of crawler. We have decided to create a multi-
agent system, which would provide support for the cre-
ation of agents and the organization of work between
them. Figure 3 demonstrated the top level of the multi-
agent system. This is a hierarchical structure in which
two types of agents exist:

• Master agent: this agent creates new agents,
maintains a database of addresses that are to be
crawled, and distributes tasks to individual agents.

• Agent: this agent contains a module that is re-
sponsible for downloading the web page content.

2.1. Distributed Web Crawling

Distributed web crawling is a distributed computing
technology. Distributed web crawling is a basic ele-
ment for any of the decentralized search applications.
The web content collected by a distributed crawler
can be indexed by decentralized search infrastructures,
or archived using a permanent storage infrastructure.
The distributed crawler uses the excess bandwidth and
computing resources of clients to crawl the websites.
Such systems may allow for users to offer their own
computing and bandwidth resources for crawling web
pages. Distributing the load of these tasks across many
computers saves the cost that would otherwise be spent
on maintaining large computing clusters [5].

Fig. 3: Distributed web crawling.

The query is executed in a distributed manner as
follows. Each crawler node starts the query engine and
is responsible for crawling of different web pages. At
first, the query is sent to all the crawler agents, and set
to run according to exit criterion (crawling time, depth
of crawl etc.). The crawl is started by publishing a
set of URLs to each crawler, which is then responsible
for downloading data from this given set. Once the
crawler finishes crawling, it contacts manager crawler
that provides more URLs to crawl [6].

2.2. Twitter Search API

The Twitter Search API is used for running searches
against the real-time index of recent Tweets. There are
several important facts that you need to know before
using the Twitter Search API [7]. Limitations:

• The Search API is not complete index of all
Tweets, but is only an index of recent Tweets. In-
dex includes between 6-9 days of Tweets.

• Complex queries can be limited and Search API
will respond to such query with the error: ”er-

c© 2013 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 456

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 11 | NUMBER: 6 | 2013 | DECEMBER

ror”:”Sorry, your query is too complex. Please
reduce complexity and try again.”.

• Search does not support authentication in which
case all queries are anonymous.

• Search is focused in significance and not complete-
ness. This means that some Tweets may be miss-
ing from search results. If you want to match for
completeness you can use the Streaming API in-
stead.

• The near operator cannot be used by the Search
API. You need to use the geocode parameter.

• Queries are limited to 1000 characters in length.

• When performing geo-based searches with a ra-
dius, only one thousand distinct subregions will
be considered when evaluating the query.

The Rate Limits for the Search API are other than
for the REST API. Using the Search API you are not
limited to a certain number of API requests per hour,
but instead by the complexity and frequency. As re-
quests to the Search API are anonymous, the rate limit
is determined against the requesting client.

In order to prevent abuse the rate limit for Search
API is not published. Should the rate limit is re-
stricted. The Search API will respond with an HTTP
420 Error. ”error”:”You have been rate limited. En-
hance your calm.”. Sample result:

{

"created_at": "Tue, 15 Nov 2011 20:08:17

+0000",

"from_user": "fakekurrik",

"from_user_id": 370773112,

"from_user_id_str": "370773112",

"from_user_name": "fakekurrik",

"geo": null,

"id": 136536013832069120,

"id_str": "136536013832069120",

"iso_language_code": "en",

"metadata": {

"result_type": "recent"

},

"profile_image_url":

"http://a1.twimg.com/profile_images//

phatkicks_normal.jpg",

"source": "<a href="http://

twitter.com/">web",

"text": "@twitterapi, keep on keeping it

real",

"to_user": "twitterapi",

"to_user_id": 6253282,

"to_user_id_str": "6253282",

"to_user_name": "Twitter API"

}

3. Web Crawler
Implementation

Web crawler itself is started within every agent in-
stance. Multi-agent system is able to encapsulate any
application that needs to be run inside the multi-agent
system. This has been accomplished by following FIPA
standards [8].

There are several types of the multi-agent system
architectures. In our case, the most suitable architec-
ture is the hierarchical one, in which the hierarchy of
agent’s roles is the most essential element. Central
management element is also part of this architecture,
but it does not perform all tasks itself. It may dele-
gate part of communication and management tasks to
the control elements in lower levels of the hierarchy.
Such architecture can be represented in the form of
a tree (Fig. 4). Leaves of the tree represent discrete
and finite agents. The advantage of this architecture is
scalability and robustness. Adding additional control
elements supports load balancing management. New
element can be simply added as a child of its parent
agent and there is no need to change the implementa-
tion of the system.

Fig. 4: Architecture of system.

Our MAS implementation offers two solutions: dis-
tributed implementation (agents distributed through-
out network) or undistributed (MAS is started on one
local work station).

In distributed version, every agent starts and runs
both TCP client and TCP server in order to be able
to receive and send messages. Both TCP server and
TCP client of each agent are launched in their own
thread so that running them does not oppress the main
computational thread of the agent.

Message object is a communication element that uses
XML format for the socket communication. The Mes-
sage consists of Header and Content. The Header con-
tains information about a sender and a receiver (IP
address, port, etc.). The Content contains specific in-
formation which is the subject of the communication.
A message can be encrypted before it is sent and de-
crypted when received. The MD5 algorithm is used
for this encryption and it may as well be replaced by
any other encryption algorithm. Finally, the message
is converted into a binary form and sent.

c© 2013 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 457

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 11 | NUMBER: 6 | 2013 | DECEMBER

Multi-agent system is running set of task simultane-
ously. Workflow of the system is depicted in the Fig. 5
and description below. The basic concept is to crawl
URLs, download content of the URLs and analyze it
using data mining processor. New set of URLs is cre-
ated from this analysis. Example given from testing
during Olympics in London 2012:

• Initial set of URLs contained search phrase:
“Summer Olympics 2012”.

• Suggested keywords for new search were: “Lon-
don, Traffic jam, Accommodation, Tickets, etc.”.

Fig. 5: System concept overview.

• Top level manager agent is started with the list of
initial URLs. These URLs are divided as a task
to sub level manager agents.

• Sub level manager agents create a number of
agents to crawl Twitter social network.

• Every agent downloads target URL content and
sends it to the manager.

• Manager saves content into the DB and informs
top level manager about task completion.

• Content stored in DB is continuously passed and
analyzed by data mining processor.

• Data mining processor creates a list of important
keywords that shall be crawled for. This list is
passed to top level manager.

• Top level manager agent divides task between sub
level manager agents. New agents are created if
necessary.

4. Results

In order to test system efficiency, we have set up se-
ries of tests that have been executed during summer
Olympics in London 2012. Please note that results are
measured just for one sublevel segment: one sublevel
manager agent and set of agents belonging under this

manager. To scale the system and balance the load, we
can let the system create hundreds of these segments.
Before we do so, we need to find out optimal size of
the segment - meaning the number of agents working
in one segment.

Figure 6 shows the dependence between the volume
of downloaded data and the number of running crawler
instances. It is natural to expect that higher number
of agents will be able to process higher number of re-
quests.

Fig. 6: Crawling load.

However, according to our experiments we have dis-
covered that running about 30 – 40 crawlers is low-
ering the number of request that single crawler pro-
cesses. This is caused by manager agent not being able
to handle all requests. These requests are divided be-
tween inbound and outbound, inbound being data re-
turned from crawler and outbound being URLs to be
crawled. This phenomenon could be observed when
running about 90 crawlers, where manager agent is
overwhelmed with inbound requests and is not able to
distribute new URLs to be crawled.

We were looking for a way to increase the number
of agents which be fully served by manager. Critical
point was communication with the database. There-
fore, we focused on the performance of the database
layer, which has been programmed using ADO.NET,
Entity framework and LINQ to SQL. These three ap-
proaches were tested and compared mutually and re-
sults are described in Tab. 1.

Tab. 1: Non-transactional insertion - results.

Time CPU Time Memory
(ms) (ms) (B)

LINQ to SQL 52333 46819 2970942
Entity Framework 23091 12425 619352

ADO.NET 14333 7736 4418

Database layer using ADO.NET excelled in the
means of completion time. When connecting to SQL
Server, BULK INSERT method was added for quick
data insertion. BULK INSERT method uses specific
properties of the database [9]. Due to this implemen-
tation ADO.NET layer greatly exceeded the speed of
Link to SQL and Entity Framework. Use of ADO.NET

c© 2013 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 458

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 11 | NUMBER: 6 | 2013 | DECEMBER

layer is suitable for applications with low requirements
of abstraction and high requirements of performance.
This could be for example a data pumps, import and
export modules. The absence of a full conceptual layer
is balanced by the speed of ADO.NET layer. LINQ to
SQL returned worst results in terms of memory com-
plexity and processing time. The results are caused by
a complicated layering of LINQ to SQL. The LINQ to
SQL seeks to provide a conceptual layer.

5. Conclusion

Contribution of this work lays in the creation of an
open-source tool that will be usable in the scientific
sphere. We have demonstrated the applicability of
multi-agent approach enabling distributed crawling.
Based on measurements at the laboratory of VSB we
have tested and subsequently performed optimization
of tool for downloading data. The obtained results
show that the tool manages to download large amounts
of data (we have to take into account that the data size
depends on the size and number of tweets on Twitter).
During the testing, we have found that the optimal
number of concurrent crawlers varies between 30 and
40. Using more than 40 crawlers, relative performance
per crawler is decreased. This is due to the fact that
the manager can’t handle processing requests for saving
data into the database and simultaneous assignment of
new tasks. This phenomenon is evident from Figure 5.
When running 90 plus crawlers system loses total effi-
ciency. Thanks to this test, we have set the maximum
number of crawlers per segment to 65. If more than 65
crawlers are needed, another segment is automatically
created and tasks are balanced between old and new
segments.

Acknowledgment

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant
agreement no. 218086. This work was sup-
ported by the Grant Agency of the Czech Repub-
lic - GACR P103/13/08195S and project, reg. no.
CZ.1.07/2.3.00/20.0072.

References

[1] LIU, B. Web Data Mining: Exploring Hyper-
links, Contents, and Usage Data (Data-Centric
Systems and Applications. Springer, 2011. ISBN
978-3642194597.

[2] RUSSELL, M. A. Mining the Social Web: Analy-
zing Data from Facebook, Twitter, LinkedIn, and
Other Social Media Sites. O’Reilly Media, 2011.
ISBN 978-1449388348.

[3] MARMANIS, H. and D. BABENKO. Algorithms
of the Intelligent Web. New York: Manning Pub-
lications, 2009. ISBN 978-1933988665.

[4] SCHRENK, Michael. Webbots, Spiders, and
Screen Scrapers: A Guide to Developing Inter-
net Agents with PHP/CURL. San Francisco: No
Starch Press, 2012. ISBN 978-1449388348.

[5] BEER, M., M. FASLI and D. RICHARDS. Multi-
Agent Systems for Education and Interactive En-
tertainment: Design, Use and Experience. Her-
shey: IGI Global, 2010. ISBN 978-1609600808.

[6] SHKAPENYUK, V. and T. SUEL. Design and
implementation of a high-performance distributed
Web crawler. In: Proceedings 18th International
Conference on Data Engineering. New York:
IEEE, 2002, pp. 357–368. ISBN 0-7695-1531-2.
DOI: 10.1109/ICDE.2002.994750.

[7] MAKICE, K. Twitter API: Up and Running:
Learn How to Build Applications with the Twit-
ter API. Sebastopol: O’Reilly Media, 2009. ISBN
978-0596154615.

[8] GOMAA, H. Software Modeling and Design:
UML, Use Cases, Patterns, and Software Archi-
tectures. Cambridge: Cambridge University Press,
2011. ISBN 978-0521764148.

[9] MEHTA, V. P. Pro LINQ Object Relational Map-
ping in C# (Expert’s Voice in .NET). New York:
Springer, 2008. ISBN 978-1-59059-965-9.

About Authors

Karel TOMALA was born in 1984. In 2007,
received a Bachelor title in VSB–Technical University
of Ostrava, Faculty of Electronics and Computer
Science, Department of Telecommunications. Two
years later he received the M.Sc. title focused on
Telecommunications in the same workplace. Currently
in the doctoral study he focuses on Voice over IP
technology and Speech Quality in VoIP.

Jan PLUCAR was born in 1987. In 2011, re-
ceived a Master title in VSB–Technical University
of Ostrava, Faculty of Electronics and Computer
Science, Department of Computer science. Jan Plucar
is currently working on his Ph.D. in the field of
computer security and bio inspired computations.

c© 2013 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 459

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 11 | NUMBER: 6 | 2013 | DECEMBER

Patrik DUBEC was born in 1986. In 2011,
received a Master title in VSB–Technical University of
Ostrava, Faculty of Electronics and Computer Science,
Department of Computer science. Patrik Dubec is
currently working on his Ph.D. in the field of computer
security and data mining methods.

Lukas RAPANT was born in 1986 in Ostrava.
In 2009, he received the bachelor’s degree in applied
mathematics from VSB–Technical University of Os-
trava, Faculty of Electronics and Computer Science,
Department of Apllied Mathematics. In 2011, he
received the master degree in the same field from the
same university. Currently, he is undergoing his doc-
toral study on VSB–Technical University of Ostrava,

where he focuses on applied staticstics and graph
algorithms.

Miroslav VOZNAK is an associate professor
with Department of Telecommunications, VSB–
Technical University of Ostrava. He received his M.Sc.
and Ph.D. degrees in telecommunications, dissertation
thesis “Voice traffic optimization with regard to speech
quality in network with VoIP technology” from the
Technical University of Ostrava, in 1995 and 2002,
respectively. Topics of his research interests are Next
Generation Networks, IP telephony, speech quality
and network security. He was involved in several FP
EU projects. At present, he is also working for the
Czech National Centre of Excellence IT4I.

c© 2013 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 460

	Introduction
	Web Crawler
	Multi-Agent System

	Used Technology and Methodology
	Distributed Web Crawling
	Twitter Search API

	Web Crawler Implementation
	Results
	Conclusion

