Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Frantisek Cvachovec
University of Defence, Czech Republic

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Valeria Hrabovcova
University of Zilina, Slovakia

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Igor Piotr Kurytnik
University of Bielsko-Biala, Poland

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Ibrahim Taner Okumus
Sutcu Imam University, Turkey

Milos Orgon
Slovak University of Technology, Slovakia

Annraoi M de Paor
University College Dublin, Ireland

Neeta Pandey
Delhi Technological University, India

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Martin Vaculik
University of Zilina, Slovakia

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Vladimir Vasinek
VSB - Technical University of Ostrava, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Switching Losses Analysis of a Constructed Solar DC-DC Static Boost Converter

Weam El Merrassi, Abdelouahed Abounada, Mohamed Ramzi

DOI: 10.15598/aeee.v18i3.3699


Abstract

The DC-DC converter is majorly used in several renewable energy applications. It is usually relevant in a hard-switching operating mode at the cost of increasing power losses and declining efficiency. Power losses are comprised of switching losses and conduction losses, which affect the reliability and speed up the aging of the switch. Therefore, soft-switching techniques are inescapable to reduce electromagnetic interference EMI, minimize losses, and enhance power conversion efficiency. Among the sundry techniques of soft-switching, passive snubbers are uncomplicated and vigorous, besides it has been spotlighted as a finer alternative compared to the active snubbers that involve extra switches and an additional control circuit. This paper investigates the power loss of a conventional solar DC-DC static converter designed and controlled through Maximum Power Point Tracking (MPPT). It evaluates the switch's temperature in the hard-switching operating mode. Besides, this paper presents a new research initiative that aims to allow a zero switching and stabilizing the temperature of the switch through a novel approach of design for RLD and RCD snubber cells. This new design allows the switch to achieve soft-switching, by abolishing the voltage stress, minimizing the power losses, and stabilizing the junction temperature. This snubber has a simple structure with a few components and ease of control, which helps to upgrade the power conversion efficiency through controlling the high voltage and current stress in the switch. In this treatise, elements of the snubber are designed and adjusted for maximum reliability through the simulation in OrCAD environment. Furthermore, the effectiveness of the model is approved through experimental results on a 1600 W conventional boost to validate the proposal.

Keywords


Continuous Conduction Mode (CCM); DC-DC converter; Passive snubber; Soft-switching reverse-recovery loss; Zero Current Switching (ZCS); Zero Voltage Switching (ZVS).

Full Text:

PDF