Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Frantisek Cvachovec
University of Defence, Czech Republic

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Valeria Hrabovcova
University of Zilina, Slovakia

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Igor Piotr Kurytnik
University of Bielsko-Biala, Poland

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Ibrahim Taner Okumus
Sutcu Imam University, Turkey

Milos Orgon
Slovak University of Technology, Slovakia

Annraoi M de Paor
University College Dublin, Ireland

Neeta Pandey
Delhi Technological University, India

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Martin Vaculik
University of Zilina, Slovakia

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Vladimir Vasinek
VSB - Technical University of Ostrava, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Exploiting Full-duplex and Fixed Power Allocation Approaches for Dual-hop Transmission in Downlink NOMA

Tu-Trinh Thi Nguyen, Dinh-Thuan Do

DOI: 10.15598/aeee.v19i3.4116


Abstract

In a wireless system, dual-hop transmission requires Full-Duplex (FD) to transmit signals from the base station too far users. It is more beneficial if we deploy non-orthogonal multiple access to serve specific users, i.e. normal users (near and far users) and device-to-device users. The fairness and outage performance of these users can be studied. We particularly focus on mathematical analysis of outage performance which is computed based on Signal to Noise Ratio (SNR) of received signals at each kind of user. We derive a closed-form formula of such outage probability along with throughput. To realize both the FD NOMA, this paper performs system performance metrics and considers how self-interference make influences system performance. The simulation results validate the theoretical analysis and show that our scheme can obtain a better outage probability and throughput performance with high transmit SNR at the base station and lower required target rates.

Keywords


NOMA; outage probability; throughput.

Full Text:

PDF