Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Understanding Frequency Response of Induction Motor Winding through Electromagnetic Wave Equations

Hormaz Amrolia, Santosh C. Vora, K. P. Badgujar

DOI: 10.15598/aeee.v21i3.5029


Abstract

Frequency response analysis offers an insight about the integrity of machine windings, when employed as a tool for condition monitoring. To ensure that, an electromagnetic wave is injected from one terminal of winding, and the power of the wave at the receiving terminal is measured. The power at the terminals is measured in terms of either voltage or current. This difference in power at the two terminals can be attributed to the medium's permittivity, permeability and conductivity, through which the signal is being transmitted. This paper offers an explanation for the behavior of the voltage gain frequency response of induction motor winding and propagating medium parameters by employing the fundamental electromagnetic wave equations. Their explanation illustrates how these parameters can affect the response. The correlation established using Maxwell's equation and these parameters with frequency response analysis is evident while identifying open winding fault and issue with machine core inductance. The results are analyzed and interpreted with the new correlation.

Keywords


Condition monitoring, Electromagnetic waves, Frequency response analysis, Induction machine diagnosis, Maxwell's equations.

References

KUMAR S., D. MUKHERJEE, P. GUCCHAIT,

R. BANERJEE, A. SRIVASTAVA, D. VISHWAKARMA and R. SAKET. A comprehensive

review of condition based prognostic maintenance (cbpm) for induction motor. IEEE Access.

, vol. 7, pp. 9069090704. DOI: 10.1109/ACCESS.2019.2926527.

THORSEN O. and M. DALVA. A survey of faults

on induction motors in oshore oil industry, petrochemical industry, gas terminals, and oil reneries. IEEE Transactions on Industry Applications.

, vol. 31, iss. 5, pp. 11861196. ISSN 0093-

DOI: 10.1109/28.464536.

NANDI S., H. TOLIYAT, and X. LI. Condition

monitoring and fault diagnosis of electrical motorsa review. IEEE Transactions on Energy

Conversion. 2005, vol. 20, iss. 4, pp. 719729.

ISSN 0885-8969. DOI: 10.1109/TEC.2005.847955.

Tavner P. Review of condition monitoring of rotating electrical machines. IET Electric Power Applications, 2008, vol. 2, iss. 4, pp. 215247(32). ISSN

-8660. DOI: 10.1049/iet-epa_20070280.

BINDU S. and V. THOMAS. Diagnoses of internal faults of three phase squirrel cage induction motor a review. 2014 International

Conference on Advances in Energy Conversion Technologies (ICAECT). 2014, pp. 4854.

DOI: 10.1109/ICAECT.2014.6757060.

FILIPPETTI F., G. FRANCESCHINI, C. TASSONI, and P. VAS. AI techniques in induction

machines diagnosis including the speed ripple effect. IEEE Transactions on Industry Applications.

, vol 3, iss. 1, pp. 98108. ISSN 0093-9994.

DOI: 10.1109/28.658729.

BELLINI A., C. CONCARI, G. FRANCESCHINI, E. LORENZANI, C. TASSONI, and

A. TOSCANI. Thorough understanding and experimental validation of current sideband components in induction machines rotor monitoring. IECON 2006 - 32nd Annual Conference on

IEEE Industrial Electronics. 2006, pp. 49574962.

DOI: 10.1109/IECON.2006.347586.

KLIMAN G., R. KOEGL, J. STEIN, R. ENDICOTT, and M. MADDEN. Non- invasive detection of broken rotor bars in operating induction

motors. IEEE Transactions on Energy Conversion, 1988, vol. 3, iss. 4, pp. 873879. ISSN 0885-

DOI: 10.1109/60.9364.

TSYPKIN M. Induction motor condition monitoring: Vibration analysis technique - a practical implementation. 2011 IEEE International Electric Machines & Drives Conference

(IEMDC), 2011, pp. 406411. ISBN 978-1-4577-

-6. DOI: 10.1109/IEMDC.2011.5994629.

TRZYNADLOWSKI M. Detection of mechanical abnormalities in induction motors by electric

measurements. International Journal of Rotating

Machinery. 1999, vol. 5 , iss. 1, pp. 4152. ISSN

-621X. DOI: 10.1155/S1023621X99000044.

PENMAN J., H. SEDDING, B. LLOYD, and

W. FINK. Detection and location of interturn

short circuits in the stator windings of operating

motors. IEEE Transactions on Energy Conversion. 1994, vol. 9, iss. 4, pp. 652658. ISSN 0885-

DOI: 10.1109/60.368345.

ABU-SIADA A. , N. HASHEMNIA, S. ISLAM,

and MOHAMMAD A.S. MASOUM. Understanding power transformer frequency response analysis

signatures. IEEE Electrical Insulation Magazine.

, vol. 29, iss. 3, pp. 4856. ISSN 0883-7554.

DOI: 10.1109/MEI.2013.6507414.

CHAKRAVORTI S., D. DEY, and B. CHATTERJEE. Recent Trends in the Condition Monitoring of Transformers. London: Springer London, 2013. ISBN 978-1-4471-5549-2.

PICHER P., S. TENBOHLEN, M. LACHMAN,

A. SCARDAZZI, and P. PATEL. Current

state of transformer fra interpretation: On behalf of cigre WG A2.53. Procedia Engineering. 2017, vol. 202, pp. 312. ISSN 1877-7058.

DOI: 10.1016/j.proeng.2017.09.689.

PRAMANIK S. and L. SATISH. A critical review of the denition of FRA resonance

frequency of transformers as per IEEE std

C57.149-2012. Electric Power Systems Research.

, vol. 121, pp. 5257. ISSN 0378-7796.

DOI: 10.1016/j.epsr.2014.11.027.

BEHJAT V. and M. MAHVI. Statistical approach for interpretation of power transformers

frequency response analysis results. IET Science,

Measurement & Technology. 2015, vol. 9, iss. 3,

pp. 367375. ISSN 1751-8830. DOI: 10.1049/ietsmt.2014.0097.

BADGUJAR K., M MAOYAFIKUDDIN, and

S V KULKARNI. Alternative statistical techniques for aiding SFRA diagnostics in transformers. IET Generation, Transmission & Distribution. 2012, vol. 6, iss. 3, pp. 189198. ISSN 1751-

DOI: 10.1049/iet-gtd.2011.0268.

MUKHERJEE P. and L. SATISH. Construction of

Equivalent Circuit of a Single and Isolated Transformer Winding From FRA Data Using the ABC

Algorithm. IEEE Transactions on Power Delivery. 2012, vol. 27, iss. 2, pp. 963970. ISSN 0885-

DOI: 10.1109/TPWRD.2011.2176966.

MUKHERJEE P. and L. SATISH. Construction of equivalent circuit of a transformer winding

from driving-point impedance function analytical approach. IET Electric Power Applications.

, vol. 6, iss. 3, pp. 172180. ISSN 1751-8660.

DOI: 10.1049/iet-epa.2011.0150.

ABEYWICKRAMA N., Y. SERDYUK, and

S. GUBANSKI. Eect of core magnetization on

frequency response analysis (FRA) of power transformers. IEEE Transactions on Power Delivery.

, vol. 23, iss. 3, pp. 14321438. ISSN 0885-

DOI: 10.1109/TPWRD.2007.909032.

SATISH L. and A. JAIN. Structure of transfer function of transformers with special reference to interleaved windings. IEEE Transactions on Power Delivery. 2002, vol. 17, iss. 3,

pp. 754760. ISSN 0885-8977. DOI: 10.1109/TPWRD.2002.1022800.

NARAYANA G., K. BADGUJAR, and

S. V. KULKARNI. Factorisation-based transfer

function estimation technique for deformation

diagnostics of windings in transformers. IET

Electric Power Applications. 2013, vol. 7, iss. 1,

pp. 3946. ISSN 1751-8660. DOI: 10.1049/ietepa.2012.0148.

SAMIMI M., S. TENBOHLEN, A. AKMAL, and

H. MOHSENI. Dismissing uncertainties in the

FRA interpretation. IEEE Transactions on Power

Delivery.2018, vol. 33, iss. 4, pp. :20412043. ISSN

-8977. DOI: 10.1109/TPWRD.2016.2618601.

BRANDT M. and S. KAŠ£ÁK. Failure identication of induction motor using SFRA method 2016

ELEKTRO. 2016, pp. 269272. ISBN 978-1-4673-

-2. DOI: 10.1109/ELEKTRO.2016.7512079.

VILHEKAR T., M. BALLAL, and B. UMRE.

Application of sweep frequency response analysis for the detection of winding faults in induction motor. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. 2016, pp. 14581463. ISBN 978-1-5090-3474-

DOI: 10.1109/IECON.2016.7793565.

CIANCETTA F., A. PIZZO, C. OLIVIERI,

N. ROTONDALE, L. CASTELLINI, and

M. D'ANDREA. SFRA technique applied to

fault diagnosis on stators of electric motors. 2014

International Symposium on Power Electronics,

Electrical Drives, Automation and Motion. Italy:

IEEE, 2014, pp. 515520. ISBN 978-1-4799-4749-

DOI: 10.1109/SPEEDAM.2014.6871937.

AL-AMERI S., A. ALAWADY, M. YOUSOF,

M. KAMARUDIN, A. SALEM, A. ABU-SIADA,

and M. MOSAAD. Application of frequency response analysis method to detect

short-circuit faults in three-phase induction motors. Applied Sciences,2022, vol. 12, iss. 4.

DOI: 10.3390/app12042046.

BUCCI G., F. CIANCETTA, and E. FIORUCCI.

Apparatus for Online Continuous Diagnosis of Induction Motors Based on the SFRA Technique.

IEEE Transactions on Instrumentation and Measurement.2020, vol. 69, iss. 7, pp. 41344144. ISSN

-9456. DOI: 10.1109/TIM.2019.2942172.

MIRAFZAL B., G. SKIBINSKI, R. TALLAM,

D. SCHLEGEL, and R. LUKASZEWSKI. Universal induction motor model with low-tohigh frequency-response characteristics. IEEE

Transactions on Industry Applications. 2007,

vol. 43, iss. 5, pp. 12331246. ISSN 0093-9994.

DOI: 10.1109/TIA.2007.904401.

SANT'ANA W., G. TORRES AND L. DA SILVA

AND E. BONALDI AND L. DE OLIVEIRA AND

C. SALOMON and J. DA SILVA, Inuence of

rotor position on the repeatability of frequency

response analysis measurements on rotating machines and a statistical approach for more meaningful diagnostics. Electric Power Systems Research, 2016, vol. 133, pp. 7178. ISSN 0378-7796.

DOI: 10.1016/j.epsr.2015.11.044.

Tektronix. Programmer manual: AFG3000

Series Arbitrary / Function Generators

-1639-04. 2015. Available at: https://

www.tek.com/en/function-generator/

afg3000-function-generator-manual/

afg3000-series

Tetronix. TDS2000 Series Digital Oscilloscopes: Programmer Manual. 2006.

Available at: https://www.tek.com/

en/oscilloscope/tds210-manual/

tds200-tds1000-tds2000-tds1000b-

tds2000b-and-tps2000-programmer.

IEEE std. C57.149-2012. IEEE Guide for the

Application and Interpretation of Frequency Response Analysis for Oil Immersed Transformers.

IEEE, 2013.

IEEE Std 1057-2017 (Revision of IEEE Std 1057-

. IEEE standard for digitizing waveform

recorders. IEEE, 2018.

SATISH L. and S. VORA. Amplitude frequency response measurement: A simple technique. IEEE Transactions on Education. 2009,

vol. 53, iss. 3, pp. 365371. ISSN 0018-9359.

DOI: 10.1109/TE.2009.2023082.

TRELA K. and K. GAWRYLCZYK. Frequency response modeling of power transformer

windings considering the attributes of ferromagnetic core. 2018 International Interdisciplinary PhD Workshop (IIPhDW). Poland:

IEEE, 2018, pp. 7173. ISBN 978-1-5386-6143-7.

DOI: 10.1109/IIPHDW.2018.8388328.

KASAP S. Principles of electrical engineering materials and devices. Boston: Irwin McGraw-Hill,

Mass., 1997. ISBN 978-0256161731.


Full Text:

PDF